首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

增量MFCC计算

是一种音频特征提取方法,用于语音识别、语音合成和音频处理等领域。MFCC(Mel Frequency Cepstral Coefficients)是一种常用的音频特征表示方法,通过对音频信号进行频谱分析和倒谱变换,将频谱特征转化为倒谱系数,进而提取出一组能够代表音频特征的系数。

增量MFCC计算是在传统的MFCC计算基础上进行的优化,它可以在实时流式音频处理中提供更高效的特征提取。传统的MFCC计算需要对整个音频信号进行分帧、加窗、傅里叶变换等操作,而增量MFCC计算则可以在每个新的音频帧到达时,仅计算新增部分的特征,从而减少计算量和延迟。

增量MFCC计算的优势在于:

  1. 实时性:增量计算可以在音频流式处理中实时提取特征,适用于实时语音识别、实时语音合成等场景。
  2. 节省计算资源:增量计算只需要计算新增部分的特征,相比传统计算方法可以大幅减少计算量,节省计算资源。
  3. 低延迟:由于只计算新增部分的特征,增量计算可以减少特征提取的延迟,提高实时性能。

增量MFCC计算可以应用于多个领域,包括但不限于:

  1. 语音识别:通过提取音频特征,将语音信号转化为文本信息,用于语音识别系统。
  2. 语音合成:通过提取音频特征,将文本信息转化为语音信号,用于语音合成系统。
  3. 音频处理:通过提取音频特征,进行音频信号的降噪、语音增强、音频分割等处理。
  4. 声纹识别:通过提取音频特征,对个体的声音进行识别和辨认,用于声纹识别系统。

腾讯云提供了一系列与音频处理相关的产品和服务,其中包括:

  1. 腾讯云语音识别(Automatic Speech Recognition,ASR):提供实时语音识别和离线语音识别的能力,支持多种语言和场景。 产品链接:https://cloud.tencent.com/product/asr
  2. 腾讯云语音合成(Text-to-Speech,TTS):提供多种语音合成模型和语音风格,支持多种语言和音频格式。 产品链接:https://cloud.tencent.com/product/tts
  3. 腾讯云音频处理(Audio Processing):提供音频降噪、语音增强、音频分割等音频处理能力,满足不同场景的需求。 产品链接:https://cloud.tencent.com/product/aa
  4. 腾讯云声纹识别(Voiceprint Recognition):提供声纹注册、验证和识别等功能,用于声纹识别和身份验证。 产品链接:https://cloud.tencent.com/product/vpr

以上是关于增量MFCC计算的概念、优势、应用场景以及腾讯云相关产品的介绍。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 简单的语音分类任务入门(需要些深度学习基础)

    上次公众号刚刚讲过使用 python 播放音频与录音的方法,接下来我将介绍一下简单的语音分类处理流程。简单主要是指,第一:数据量比较小,主要是考虑到数据量大,花费的时间太长。作为演示,我只选取了六个单词作为分类目标,大约 350M 的音频。实际上,整个数据集包含 30 个单词的分类目标,大约 2GB 的音频。第二 :使用的神经网络比较简单,主要是因为分类目标只有 6 个。如果读者有兴趣的话,可以使用更加复杂的神经网络,这样就可以处理更加复杂的分类任务。第三:为了计算机能够更快地处理数据,我并没有选择直接把原始数据‘’喂“给神经网络,而是借助于提取 mfcc 系数的方法,只保留音频的关键信息,减小了运算量,却没有牺牲太大的准确性。

    02

    声音处理之-梅尔频率倒谱系数(MFCC)

    在语音识别(SpeechRecognition)和话者识别(SpeakerRecognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。

    02

    "小爱同学"之类语音唤醒芯片相关技术介绍

    作为新兴信息产业的重要应用领域,物联网的万亿级别市场正在逐步形成,超万亿级的设备和节点将通过物联网技术实现万物互联和万物智联。受限于体积、重量和成本等因素,物联网节点(如可穿戴设备、智能家居节点、无线传感器节点、环境监测节点等)需要在微型电池或能量收集技术进行供电的情况下,能够持续工作数年乃至十年以上,这对芯片提出了苛刻的低功耗要求。 目前,降低物联网芯片功耗的主要研究方向是基于周期性工作模式的专用型唤醒芯片(例如:专用语音识别唤醒芯片),通过让芯片处于周期性的“休眠-唤醒”的切换状态,来实现降低功耗的目的;然而,物联网节点通常工作在“随机稀疏事件”场景下,为了避免丢失随时可能发生的事件,通常需要“休眠-唤醒”的频率远高于事件的真实发生率,从而导致了严重的功耗浪费。

    02

    机器学习会议论文(三)StarGAN-VC实现非并行的语音音色转换

    2.The introduction starGAN-VC是将一篇语音方向的论文,在上一篇论文中我们介绍了starGAN的网络结构以及工作原理,以及starGAN是如何实现多域的图像风格迁移,但是starGAN-vc则是进行了领域的融合与迁移,vc是(voice conversion),也就是将图像领域的starGAN放入语音领域,进行语音的音色转换,在图像领域我们实现性别的转换,比如将一张male picture转换为female picture,当然指的是风格迁移。starGAN-VC则是将模型放入语音,将male voice转换为female voice。 3.The related work starGAN与StarGAN-vc的网络模型相似,变化不大,但是图像信号与语音信号的差别比较大,语音信号是典型的时序信号,可以理解为一个一维数组的数据,对于神经网络来说处理运算的是矩阵数据,所以需要对语音信号进行预处理,才能实现网络的可以接受的数据格式 (1)对于语音信号需要进行语音信号的特征提取——梅尔频率倒谱系数(MFCC) MFCC中包涵语音信号的特征,同时以矩阵的形式进行的存储, MFCC:Mel频率倒谱系数的缩写。Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。Mel频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。

    01

    人工智能技术在声纹识别方面的应用 | 解读技术

    人工智能技术对于传统产业的推进作用越来越凸显,极大提升了传统产品的商业价值。“听声识我,开口即播”长虹CHiQ5人工智能电视成为全球首款搭载声纹识别的人工智能电视,可以直接通过每个人说话的声音不同而区分目前使用电视用户是谁,从而实现内容的精准推荐。无需借助遥控和手机等智能设备,通过识别家庭成员的声纹来控制电视。语音助手配备海量语音库,使用语义模糊识别功能,即使说错片名也能自动识别出你想要的内容,但是当人们在观看某一节目的时候谈论提及其他电视节目名称,语音助手功能识别后当即转换到另一个节目影响正常节目的观看。但是在价格方面,55寸售价7597元,65寸售价13997元,75寸售价21997元,价格过高难以普及,但是也从侧面证明人工智能确实可以提升产品附加值。

    03

    Wolfram 技术帮您通过咳嗽音来预测诊断新冠病毒

    声音分类可能是一项艰巨的任务,尤其是当声音样本的变化很小而人耳无法察觉时。机器的使用以及最近的机器学习模型已被证明是解决声音分类问题的有效方法。这些应用程序可以帮助改善诊断,并已成为心脏病学和肺病学等领域的研究主题。卷积神经网络识别COVID-19咳嗽的最新创新以及使用咳嗽记录来检测无症状COVID-19感染的MIT AI模型(https://news.mit.edu/2020/covid-19-cough-cellphone-detection-1029)显示出仅凭咳嗽声就可识别COVID-19患者的一些令人鼓舞的结果。综观这些参考资料,这项任务可能看起来颇具挑战性,就像只有顶尖研究人员才能完成的任务一样。在本文中,我们将讨论如何使用Wolfram语言中的机器学习和音频功能获得这非常有希望的结果。

    03
    领券