大家好,又见面了,我是你们的朋友全栈君。 这是我的第一篇原创博客,谈谈自己在读研中的一些小思考,希望能给大家的学习带来一点启发。...而函数内积的定义为: 可能很多人会想为什么函数也可以有内积,为什么这样定义,它跟一般的向量内积又有什么联系呢?...回顾一下两个向量的内积: 我们直到两个向量的内积可以看作是a向量投影到b向量,也可以看作是b向量投影到a向量;如果两个向量正交,那他们的内积就为零。...某种意义上,可见向量内积也可以看作是两者相似程度的度量。...回到函数的内积,若两个函数是离散的,即f[n],g[n],我们不就可以把该函数看作是一个在n维空间展开的向量 可见一个离散函数的内积下形式是跟一般向量内积的形式是一致的。
一、信号的相关原理 互相关反映向量 x 和移位(滞后)向量 y 之间的相似性。 最直观的解释是:互相关的作用是为了找到信号在哪一时刻与另一信号最像(另一信号为本身时就是自相关)!...即向量内积的连续形式。其在线性空间角度上的意义是:一个向量在另一个向量上的投影,内积结果越大,投影越大,两个向量间夹角越小,方向越一致,相似度越高。...,xcrorr(A,B) 函数返回一个长度为 2*max(M,N)-1 的向量,其中包含了所有可能的滞后值的互相关。...2、频域实现方法 频域的相乘等于时域的卷积,时域的卷积和相关不同的是,它计算时需要把序列反转再去做相乘累加。...这里还涉及到一个循环卷积和线性卷积的问题:直接把两个信号做FFT,取共轭相乘,再做 IFFT 得出来的是循环卷积的结果。
人生的跑道上,有人用心欣赏风景,有人努力让自己成为风景。人人都希望追求到美好,其实美好就是无止境的追求。...全文字数:1127字 阅读时间:8分钟 前言 本文引入向量对向量求导的问题,向量对向量求导的关键是最终求导向量的排列问题。...提出了向量对向量求导的具体流程,最后以本文开头的向量求导为例具体展示向量对向量求导的具体流程。...image.png image.png 不过为了方便我们在实践中应用,通常情况下即使y向量是列向量也按照行向量来进行求导。...▲注意事项~来自小象学院 几个重要的公式推广(可以使用上面的方式进行求解): 参考: 1. 小象学院机器学习
那么一般的操作就是用32个3×3的卷积核来分别同输入数据卷积,这样每个卷积核需要3×3×16个参数,得到的输出是只有一个通道的数据。...1.2 深度可分离卷积的过程 而应用深度可分离卷积的过程是①用16个3×3大小的卷积核(1通道)分别与输入的16通道的数据做卷积(这里使用了16个1通道的卷积核,输入数据的每个通道用1个3×3的卷积核卷积...1.3 深度可分离卷积的优点 可以看出运用深度可分离卷积比普通卷积减少了所需要的参数。重要的是深度可分离卷积将以往普通卷积操作同时考虑通道和区域改变成,卷积先只考虑区域,然后再考虑通道。...因为输出数据的改变,相应的,卷积核也需要做出同样的改变。即每组中卷积核的深度也就变成了(C1/g),而卷积核的大小是不需要改变的,此时每组的卷积核的个数就变成了(C2/g)个,而不是原来的C2了。...转置卷积和反卷积的区别 那什么是反卷积?从字面上理解就是卷积的逆过程。值得注意的反卷积虽然存在,但是在深度学习中并不常用。而转置卷积虽然又名反卷积,却不是真正意义上的反卷积。
那么一般的操作就是用32个3×3的卷积核来分别同输入数据卷积,这样每个卷积核需要3×3×16个参数,得到的输出是只有一个通道的数据。...而以往标准的卷积过程可以用下面的图来表示: 1.2 深度可分离卷积的过程 而应用深度可分离卷积的过程是①用16个3×3大小的卷积核(1通道)分别与输入的16通道的数据做卷积(这里使用了16个1通道的卷积核...因为输出数据的改变,相应的,卷积核也需要做出同样的改变。即每组中卷积核的深度也就变成了(C1/g),而卷积核的大小是不需要改变的,此时每组的卷积核的个数就变成了(C2/g)个,而不是原来的C2了。...也就是说从size上来讲,2层3*3卷积转换相当于1层5*5卷积。题外话,从以上图的演化也可以看出,一个5×5的卷积核是可以由2次连续的3×3的卷积代替。...转置卷积和反卷积的区别 那什么是反卷积?从字面上理解就是卷积的逆过程。值得注意的反卷积虽然存在,但是在深度学习中并不常用。而转置卷积虽然又名反卷积,却不是真正意义上的反卷积。
向量内积 一般指点积; 在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个 向量并返回一个实数值 标量的 二元运算。...[1] 两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为: a·b=a1b1+a2b2+……+anbn。...使用 矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为: a·b=a^T*b,这里的a^T指示 矩阵a的 转置。...点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成: 定义向量: 根据三角形余弦定理有: 根据关系c=a-b...(a、b、c均为向量)有: 即: 向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ: 根据这个公式就可以计算向量a和向量b之间的夹角。
一、前言 词向量、词嵌入或者称为词的分布式表示,区别于以往的独热表示,已经成为自然语言任务中的一个重要工具,对于词向量并没有直接的方法可以评价其质量,下面介绍几种间接的方法。...二、评价方法 对于词向量的评价更多还是应该考虑对实际任务的收益,脱离的实际任务很难确定A模型就一定比B好,毕竟词向量方法更多是一种工具。...上述文件代表了词语之间的语义相关性,我们利用标注文件与训练出来的词向量相似度进行比较,如:词向量之间的cos距离等,确定损失函数,便可以得到一个评价指标。...3、文本分类任务 这个任务利用词向量构成文本向量,一般采用求和平均的方式,之后利用构成的文本向量进行文本分类,根据分类的准备率等指标衡量词向量的质量。...在语料的选择上,同领域的语料比大规模的其他领域语料重要。 3、向量维度 向量维度太小难以表现出语义的复杂度,一般更大的维度的向量表现能力更强,综合之下,50维的向量可以胜任很多任务。
这里模型1为conv+bn,这里对卷积层和BN层进行了初始化,特别是BN层的移动平均和方差初始化,因为这个数值默认初始化是0,是通过训练迭代出来的; 模型2为conv,并且我们用模型1的卷层权重去初始化模型...2; 模型3为conv,这里我们合并模型1的卷层和BN层,然后用合并后的参数初始化模型3; 如果计算没问题的话,那么相同输入情况下,模型2输出手动计算BN后,应该和模型1输出一样,模型1的卷积和bn合并后...这里手动计算模型2的卷积过程,然后和模型2输出进行对比。...卷积原理如图 模型2有8个卷积核,每个kernel尺度为(3,3,3)对应待卷积特征图(C,H,W),因为pad=1,stride=1,卷积之后输出特征图尺度为(1,8,64,64),首先对输出进行填充...合并Conv和BN层 在开头图中详细说明了如何合并卷积和BN层,这里把模型1的两层合并为一层,也就是模型3.
深度思考和持续复盘是人类进步的阶梯。 任何一门技术都博大精深,尤其是前端。最近还是要觉得需要复盘一些学习和工作中遇到的问题的,接下来就做一下复盘笔记。 1. 如何让滚动条不占位?...我们可以使用:overflow-y: overlayoverflow的值为overlay,它的行为与auto相同的,但是在溢出时出现滚动条的展示方式有区分,overlay是覆在内容上面,它是不占位的。...我们以前也许都知道fixed定位是相对于浏览器窗口进行定位的,所以不管我们将fixed元素放在哪里,它都不会改变自己的定位基准,但是直到最近工作中遇到了一个问题,才打破了我的认知——原来fixed在某些条件下可以基于父元素定位...我们在多人协作时往往会出现或多或少的冲突情况,我最近在工作中就遇到了上图的问题。 这个错误出现的原因就是:我和其他人修改了同一份文件,而且那个人比我先提交。...前端还有很多神奇诡异的现象,归根结底还是文档看的不够细,后续有机会会继续总结,希望你也能从中收获,成长,做更好的自己。
反卷积与卷积 反卷积,顾名思义是卷积操作的逆向操作。 为了方便理解,假设卷积前为图片,卷积后为图片的特征。...卷积,输入图片,输出图片的特征,理论依据是统计不变性中的平移不变性(translation invariance),起到降维的作用。如下动图: ?...反卷积,输入图片的特征,输出图片,起到还原的作用。如下动图: ? 我们知道卷积结合池化的降维作用,将神经网络推向深度学习,开启神经网络的新世界,那么反卷积的作用呢?...采用卷积对generator生成的图片判别真伪)。...反卷积的类型 一般类型: ?
不同的特征都有不同的特征值,这个特征值就是函数的取值。该函数是一个复变函数,也就是说它具体的取值是一个复数。...上图中紫色的坐标轴是一个新的坐标系,而该向量在新坐标系中的坐标为 其中是向量在轴上投影的模;该式子的前三项就是向量和坐标轴向量的内积。而第四项就是坐标轴向量的单位向量。...对于向量的内积,如果我们已经知道向量的坐标,那么内积还可以写成两个向量的坐标值逐项相乘再相加。 则向量与的内积如上图所示,由于是无穷连续的实数,所以又可以用一个定积分来表示。...它跟坐标轴的单位向量相乘,就是向量在各个坐标轴上的分量。...这些分量本身就是向量,只要将这些分量向量加起来,其实就是向量本身,所以这个变换的逆过程可以写成 我们将 n 用 ω 来替换,坐标轴用一组具体的向量 e^iωt 代入,就有了 因为 e^iωt 是复数,整个式子就变成了复变函数
最近在做姿态估计的项目,在定制和实现卷积网络的时候发现自己对里面的一些计算细节还不够了解,所以整理了该文章,内容如下: 卷积计算过程(单 / RGB 多通道) 特征图大小计算公式 转置卷积(反卷积)的计算过程...卷积计算过程(单/RGB多通道) 假设输入层的大小为 5 x 5,局部感受野(或称卷积核)的大小为 3 x 3,那么输出层一个神经元所对应的计算过程(下文简称「卷积计算过程」)如下: ?...卷积计算过程 上述计算对应的公式如下: ? 其中 I 表示输入,W 表示卷积对应的权重。 每个卷积核对应的权重 W 在计算卷积过程中,值是固定的,我们称为权重共享。...空洞卷积的计算过程 空洞卷积(Dilated convolutions)在卷积的时候,会在卷积核元素之间塞入空格,如下图所示: 空洞卷积过程,蓝色表示输入,绿色表示输出 这里引入了一个新的超参数 d,(...d - 1) 的值则为塞入的空格数,假定原来的卷积核大小为 k,那么塞入了 (d - 1) 个空格后的卷积核大小 n 为: ?
导言 本文详细介绍了卷积神经网络(CNN)中的卷积算法,包括 零填充(zero padding)和单位步长(unit-stride)等参数在不同设置下计算推导。...本文为“深度学习的卷积算法指南[2] 卷积详解”,重点介绍原论文中第二章 Convolution arithmetric 内容。...: 二维(2-D)离散卷积(N=2) 方形(square)输入(i1=i2=i) 方形卷积核(k1=k2=k) 沿着每条轴相同的步长(s1=s2=s) 沿着每条轴相同的zero padding(p1=...有趣的是, 尽管具有不同的输入大小,但这些卷积共享相同的输出大小。...虽然这不影响对卷积(convolution)的分析,但这会使反/转置卷积(transposed convolutions)的分析复杂化。 ?
但因这次项目中遇到了这么个表达进度而又不是找不到现实UI库的情况下只能硬着头皮上拉,现在复盘一下当时的心理路程: 1 我需要知道怎么划线 2 我需要怎么知道设置颜色 3 我需要画个按比例动态变更的矩形...strokePath() 2 化矩形 有了1的基础我们就查找了一下怎么绘制矩形,以及上文中我们看到矩形显示,其实是两个矩形叠加的想过(相互遮挡形成),当然了也可采用相邻的两个矩形(lz其实偷懒了)...setFillColor(bgColor.cgColor) // 根据设置好的填充色,在特定的框中涂抹成矩形 ctx1?....那么我们需要知道哪些: 1 文本的绘制位置 2 文本绘制时的长度 3文本在绘制时是否会超出边界导致看不到的情况发生 items.forEach { (txt) in...,整个过程其实就是一个细致的拆分,当然了咱们的实例只是个简单的,但是对于后续遇到类型这个需要画进度的事情我们也可按照思路一点点拆分来实现
我所说的“复盘”远远不止重大天气过程的复盘,更是一种工作方法甚至是一种能力提升的手段。...“复盘”是个围棋术语,指的是每次博弈之后,双方棋手把刚才的对局复演一遍,分析对局当中得失的关键,从而起到提升自己棋力的目的。...因此很希望我们重大天气过程的复盘流程能够进一步优化、复盘基调更加清晰准确、复盘后的经验和改进思路可以沉淀更久,不要让复盘会成为参会人员的一次任务,任务完成后就成为“大年初一挂灯笼---年年如此”了。...我想厉害的人和普通人的区别可能就在于对自我的复盘上,复盘会让你更多的发现问题、发现不足,然后通过自我分析和推演,寻找问题的解决办法并付诸行动。其实复盘就是更深层次的认识自我、发现自我、提升自我的过程。...让整个团队聚焦一个改进点开一次复盘会,想清楚复盘的真正目的,开诚布公的摊开平时不愿意面对的真相,认真思考背后的深层原因,这时候就能够进入到集体反思和有意识的集体学习阶段了,这样的复盘绝对是提升团队整体实力的好办法
计划用3-4次,彻底说清楚在自然语言处理中,词向量的由来,本质和训练。公众号专栏主要讲基本原理,知识星球讲实际的操作。 本篇主要讲述词向量的由来及本质。...例如,根据语料库的分词结果,建立一个词典,每个词用一个向量来表示,这样就可以将文本向量化了。 最早的文本向量化方法是词袋模型,我们先来看看词袋模型。...接下来,词向量就“粉墨登场”了。 3 词向量 相比于词袋模型,词向量是一种更为有效的表征方式。怎么理解呢?词向量其实就是用一个一定维度(例如128,256维)的向量来表示词典里的词。...经过训练之后的词向量,能够表征词语之间的关系。例如,“香蕉”和“苹果”之间的距离,会比“香蕉”和“茄子”之间的距离要近。 通过多维向量表示,也能更为方便的进行计算。...5 总结 上面详细介绍了词向量的来历和作用,并介绍了一种词向量的训练方法。 在实际过程中,并不是用上述神经网络来训练词向量的因为词向量是如此的重要,NLP工作者们设计了专门的网络来训练词向量。
例如,平方L2L_2L2范数对x 中每个元素的导数只取决于对应的元素,而L2L_2L2范数对每个元素的导数却和整个向量相关。...每当x 中某个元素从0 增加ϵ,对应的L1L_1L1范数也会增加ϵ。 L0L_0L0 norm 有时候我们会统计向量中非零元素的个数来衡量向量的大小。...有些作者将这种函数称为“L0L_0L0 范数’’,但是这个术语在数学意义上是不对的。向量的非零元素的数目不是范数,因为对向量缩放 倍不会改变该向量非零元素的数目。...∣F=i,j∑Ai,j2 其类似于向量的L2L_2L2范数。...点积使用范数来表示 两个向量的点积(dot product)可以用范数来表示。
卷积神经网络的卷积核大小、卷积层数、每层map个数都是如何确定下来的呢?...看到有些答案是刚开始随机初始化卷积核大小,卷积层数和map个数是根据经验来设定的,但这个里面应该是有深层次原因吧,比如下面的手写字卷积神经网络结构图1,最后输出为什么是12个map,即输出12个特征?...在达到相同感受野的情况下,卷积核越小,所需要的参数和计算量越小。 具体来说。卷积核大小必须大于1才有提升感受野的作用,1排除了。...每一层卷积有多少channel数,以及一共有多少层卷积,这些暂时没有理论支撑,一般都是靠感觉去设置几组候选值,然后通过实验挑选出其中的最佳值。...多说几句,每一层卷积的channel数和网络的总卷积层数,构成了一个巨大的超参集合,这个超参集合里的最优组合,很可能比目前业界各种fancy的结构还要高效。
为更好地理解卷积层,以两张图片对比所示: ? 左侧若采用全连接方式进行学习,则参数量很大。而右侧只提取局部特征(对应点的周边的一些属性)进行学习,可以极大地减少参数量。...我们将这种相乘并累加的操作叫为卷积操作。 这种卷积操作在信号处理中是有明确定义的, ? 这种卷积操作在图像处理领域中有诸多应用, Sharpen(锐化操作) ?...用5*5的核进行卷积计算 这样生成的feature map的size与原图一样,戴氏特征更加突出 相应的也可以进行模糊处理 Blur(模糊处理) ? 模糊处理即取周围点进行相乘累加。...那么经过了卷积运算后,生成的feature map为 ? 每次扫描使用不同的核,会得到不同的feature map。
那么问题来啦现在令我疑惑的是,为啥本地测试添加接口前缀可以正常访问接口资源。但是放到服务器上的话,就需要取消接口前缀》??不然就会提示401 无法访问系统资源 401
领取专属 10元无门槛券
手把手带您无忧上云