首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

神经网络中的分位数回归和分位数损失

(区间预测)”的方法都被称作分位数回归,上面的这些机器学习的方法是用了一种叫做Quantile Loss的损失。...Quantile loss是用于评估分位数回归模型性能的一种损失函数。在分位数回归中,我们不仅关注预测的中心趋势(如均值),还关注在分布的不同分位数处的预测准确性。...假设我们有一个预测问题,其中我们要预测一个连续型变量的分布,并且我们关注不同的分位数,例如中位数、0.25分位数、0.75分位数等。...总结 分位数回归是一种强大的统计工具,对于那些关注数据分布中不同区域的问题,以及需要更加灵活建模的情况,都是一种有价值的方法。...本文将介绍了在神经网络种自定义损失实现分位数回归,并且介绍了如何检测和缓解预测结果的"扁平化"问题。

64310

用于时间序列概率预测的分位数回归

图(A): 分位数回归 分位数回归概念 分位数回归是估计⼀组回归变量X与被解释变量Y的分位数之间线性关系的建模⽅法。 以往的回归模型实际上是研究被解释变量的条件期望。...分位数回归的优点 (1)能够更加全⾯的描述被解释变量条件分布的全貌,⽽不是仅仅分析被解释变量的条件期望(均 值),也可以分析解释变量如何影响被解释变量的中位数、分位数等。...(2)中位数回归的估计⽅法与最⼩⼆乘法相⽐,估计结果对离群值则表现的更加稳健,⽽且,分位 数回归对误差项并不要求很强的假设条件,因此对于⾮正态分布⽽⾔,分位数回归系数估计量则更 加稳健。...图(F):置信区间与预测区间的区别 首先,它们的目标不同: 线性回归的主要目标是找到一条线,使预测值尽可能接近给定自变量值时因变量的条件均值。 分位数回归旨在提供未来观测值的范围,在一定的置信度下。...它估计自变量与因变量条件分布的不同量化值之间的关系。 其次,它们的计算方法不同: 在线性回归中,置信区间是对自变量系数的区间估计,通常使用普通最小二乘法 (OLS) 找出数据点到直线的最小总距离。

70310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    分位数回归(quantile regression)简介和代码实现

    这种理论也可以在预测统计中为我们服务,这正是分位数回归的意义所在——估计中位数(或其他分位数)而不是平均值。通过选择任何特定的分位数阈值,我们既可以缓和异常值,也可以调整错误的正/负权衡。...什么是分位数回归? 分位数回归是简单的回归,就像普通的最小二乘法一样,但不是最小化平方误差的总和,而是最小化从所选分位数切点产生的绝对误差之和。...statsmodels中的分位数回归 分位数回归是一种不太常见的模型,但 Python中的StatsModel库提供了他的实现。这个库显然受到了R的启发,并从它借鉴了各种语法和API。...相比之下,分位数回归最常用于对响应的特定条件分位数进行建模。与最小二乘回归不同,分位数回归不假设响应具有特定的参数分布,也不假设响应具有恒定方差。...下表总结了线性回归和分位数回归之间的一些重要区别: xgboost的分位数回归 最后如果想使用xgboost,又想试试分位数回归,那么可以参考以下代码 class XGBQuantile(XGBRegressor

    5.9K30

    R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析

    p=22702 摘要 贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯。...简介 回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归 Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...还可以拟合贝叶斯lassoTobit 分位数回归和贝叶斯自适应lassoTobit 分位数回归。当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。 ?...结论 在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。此外,本文还实现了带有lasso和自适应lasso惩罚的贝叶斯Tobit 分位数回归。

    2.4K30

    用于时间序列概率预测的共形分位数回归

    分位数回归 QR QR 估算的是目标变量的条件量值,如中位数或第 90 个百分位数,而不是条件均值。通过分别估计不同水平预测变量的条件量值,可以很好地处理异方差。...对所有数据范围都会产生一个固定的宽度。 共形分位数回归CQR 为什么不同时使用 QR 和 CP 呢?共形分位数回归(CQR)技术提供了一个值得称赞的解决方案,可以提供具有有效覆盖保证的预测区间。...什么是CQR CQR(Conformal Quantile Regression)的基本思想是建立分位数回归(QR)模型用于预测区间,并使用CP技术进行调整。...CQR 的构建 其过程可概括如下: 首先,我们将历史时间序列数据分为训练期、校准期和测试期。 然后在训练数据上训练分位数回归模型。应用训练模型生成校准数据的量化预测。...环境要求 NeuralProphet 有三个选项: (i) 分位数回归 (QR) (ii) 保形预测 (CP) (iii) 保形分位数回归 (CQR),用于处理预测的不确定性。 !

    38610

    R语言分位数回归预测筛选有上升潜力的股票

    p=18984 现在,分位数回归已被确立为重要的计量经济学工具。与均值回归(OLS)不同,目标不是给定x的均值,而是给定x的一些分位数。您可以使用它来查找具有良好上升潜力的股票。...您可能会认为这与股票的beta有关,但是beta与OLS相关,并且是对称的。如果市场出现上涨,高beta股票将获得上行波动的收益,但对称地,当市场下跌时,您可能会遭受巨额亏损。...使用下图最好地理解分位数回归的用法: ? 绘制的是股票收益。蓝线是OLS拟合值,红线是分位数(80%和20%)拟合值。 在上部面板中,您可以看到,当市场上涨时(X轴上的正值很高),Y轴上的分散很大。...假设我们以最差的比率做空股票,并以最佳的比率做多股票。...从结果可以看到模型有较好的表现。

    45410

    R语言分位数回归Quantile Regression分析租房价格

    本文想在R软件中更好地了解分位数回归优化。在查看分位数回归之前,让我们从样本中计算中位数或分位数。 中位数 考虑一个样本 ? 。要计算中位数,请求解 ? 可以使用线性编程技术解决。..., r = lp("min", c(rep(1,2*n),0), tail(r$solution,1) [1] 1.01523 分位数 当然,我们可以将之前的代码改编为分位数 tau =...R代码 r = lp("min", c(rep(tau,n),rep(1-tau,n),0), [1] 0.674124 分位数回归(简单) 考虑一个数据集,该数据集是一个主要城市的单位租金与面积...分位数回归的线性程序 ? 与ai,bi≥0和 ?...多元分位数回归 现在,我们尝试使用两个协变量呢,例如,让我们看看是否可以将单位的租金解释为面积的(线性)函数和建筑年龄。

    86220

    贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据|附代码数据

    p=22702 最近我们被客户要求撰写关于贝叶斯分位数回归的研究报告,包括一些图形和统计输出。...贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯 摘要 还包括总结结果、绘制路径图、后验直方图、自相关图和绘制分位数图的进一步建模功能...简介 回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归 Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。  结论 在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。

    33100

    贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据|附代码数据

    p=22702 最近我们被客户要求撰写关于贝叶斯分位数回归的研究报告,包括一些图形和统计输出。...贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯 摘要 还包括总结结果、绘制路径图、后验直方图、自相关图和绘制分位数图的进一步建模功能...简介 回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归 Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。  结论 在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。

    48620

    贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据|附代码数据

    p=22702最近我们被客户要求撰写关于贝叶斯分位数回归的研究报告,包括一些图形和统计输出。...贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯摘要还包括总结结果、绘制路径图、后验直方图、自相关图和绘制分位数图的进一步建模功能...简介回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。 结论在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。

    97100

    贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据|附代码数据

    最近我们被客户要求撰写关于贝叶斯分位数回归的研究报告,包括一些图形和统计输出。...贝叶斯回归分位数在最近的文献中受到广泛关注,本文实现了贝叶斯系数估计和回归分位数(RQ)中的变量选择,带有lasso和自适应lasso惩罚的贝叶斯 摘要 还包括总结结果、绘制路径图、后验直方图、自相关图和绘制分位数图的进一步建模功能...简介 回归分位数(RQ)由(Koenker和Gilbert,1978)提出,将感兴趣的结果的条件分位数作为预测因子的函数来建模。...贝叶斯_分位数_回归 Tobit RQ为描述非负因变量和协变量向量之间的关系提供了一种方法,可以被表述为因变量的数据未被完全观察到的分位数回归模型。...当τ=0.50时,函数可以用来获得Tobit 分位数回归的后验平均值和95%的置信区间。  结论 在本文中,我们已经说明了在分位数回归(RQ)中进行贝叶斯系数估计和变量选择。

    33100

    R语言分位数回归预测筛选有上升潜力的股票|附代码数据

    p=18984  最近我们被客户要求撰写关于分位数回归的研究报告,包括一些图形和统计输出。 现在,分位数回归已被确立为重要的计量经济学工具。...使用下图最好地理解分位数回归的用法: 绘制的是股票收益。蓝线是OLS拟合值,红线是分位数(80%和20%)拟合值。...---- 点击标题查阅往期内容 贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据 01 02 03 04 在上部面板中,您可以看到,当市场上涨时(X轴上的正值很高...本文选自《R语言分位数回归预测筛选有上升潜力的股票》。...点击标题查阅往期内容 matlab使用分位数随机森林(QRF)回归树检测异常值 贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据 分位数自回归QAR分析痛苦指数

    32800

    matlab使用分位数随机森林(QRF)回归树检测异常值|附代码数据

    最近我们被客户要求撰写关于分位数随机森林(QRF)回归树的研究报告,包括一些图形和统计输出。...这个例子展示了如何使用分位数随机林来检测异常值 分位数随机林可以检测到与给定X的Y的条件分布有关的异常值。 离群值是一些观测值,它的位置离数据集中的大多数其他观测值足够远,可以认为是异常的。...生长回归树的分位数随机森林。 估计预测变量范围内的条件四分位(Q1、Q2和Q3)和_四分位_距(IQR)。 将观测值与边界进行比较,边界为F1=Q1−1.5IQR和F2=Q3+1.5IQR。...预测条件四分位数和四分位数区间 使用分位数回归,估计t范围内50个等距值的条件四分位数。...plot(Tbl.t,Tbl.y,'.'); legend('数据','模拟的离群值','F_1','F_2'); title('使用分位数回归的离群值检测') 所有模拟的异常值都在[F1,F2]之外

    45900

    R语言分位数回归、最小二乘回归OLS北京市GDP影响因素可视化分析

    【2】随着计算机技术的不断突破,分位数回归软件包现已是主流统计软件R、SAS等中的座上客了,分位数回归也就自然而然地成为经济、医学、教育等领域的常用分析工具。...研究意义 作为一种精确地描述自变量对于因变量的变化范围以及条件分布影响的统计方法,分位数回归的概念最早由Koenker和Basset(t1978)【4】提出。...【9】 文献综述 分位数回归是对以古典条件均值模型为基础的最小二乘法的延伸,它用几个分位函数来估计整体模型。分位数回归更能精确地描述自变量X对于因变量Y的变化范围以及条件分布形状的影响。...分位数回归能够捕捉分布的尾部特征,当自变量对不同部分的因变量的分布产生不同的影响时。...分位数回归拟合直线 ---- 点击标题查阅往期内容 贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据 01 02 03 04 分位数回归图 从分位数回归的结果来看

    29530

    R获取数值向量的分位数值

    如果我们手上有一个数值向量,怎么用R去获取这个向量的各个分位数值呢?...我们来看个具体的例子 a=1:10 summary(a) 我们可以得到下面的结果,summary(a)一共得到6个数值,分别是a的最小值,1/4分位数,中值(2/4分位数),均值,3/4分位数和最大值。...第一四分位数 (Q1),又称“较小四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。 第二四分位数 (Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。...第三四分位数 (Q3),又称“较大四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。...这个函数除了可以输出固定这这个几个分位数值以外,还可以输出你指定的分位数值。

    1.1K10

    R语言分位数回归、最小二乘回归OLS北京市GDP影响因素可视化分析

    【2】随着计算机技术的不断突破,分位数回归软件包现已是主流统计软件R、SAS等中的座上客了,分位数回归也就自然而然地成为经济、医学、教育等领域的常用分析工具。...研究意义 作为一种精确地描述自变量对于因变量的变化范围以及条件分布影响的统计方法,分位数回归的概念最早由Koenker和Basset(t1978)【4】提出。...【9】 文献综述 分位数回归是对以古典条件均值模型为基础的最小二乘法的延伸,它用几个分位函数来估计整体模型。分位数回归更能精确地描述自变量X对于因变量Y的变化范围以及条件分布形状的影响。...分位数回归能够捕捉分布的尾部特征,当自变量对不同部分的因变量的分布产生不同的影响时。...分位数回归拟合直线 分位数回归图 从分位数回归的结果来看,所有数据均被分位数回归模型的预测区间所覆盖。因此模型比普通二乘更好。

    28620

    WR:距离衰减方程用分位数回归代替线性回归研究淡水水库中抗生素抗性基因的变化

    此研究开发了一个数据汇编、整理和统计框架,以淡水水库为例,将基于分位数回归(Quantile Regression,QR)的方法应用与不同空间尺度的抗生素抗性基因(ARGs)的距离衰减规律。...结果发现QR在解释ARGs的传播潜力方面优于传统使用的最小二乘回归(LSR)。99分位数的QR模型受样本量不均匀的影响较小,能更好地量化ARGs的传播。...在单个水库内,99分位数的QR模型表明在这一较小的空间尺度上不存在ARGs的扩散限制。 QR和LSR: QR使用响应变量概率分布的分位数作为其拟合对象,而LSR使用该分布的均值。...QR法的拟合度(R2)随着分位数水平的增加而增加,DD方程上边界的显著性水平(p )在不同分位数水平下均趋于0,ARGs组成相似性的DDRs在分位数水平0.99处达到稳定(图2a)。...在1 ~ 99分位数水平上,截距(β0),斜率(α1 ,蓝线:水;橙线:沉淀物),决定系数(R2),显著性水平(p)。蓝线:水库水体;橙线:沉积物。

    29410

    万字长文,演绎八种线性回归算法最强总结!

    回归分析表明自变量和因变量之间的显著关系。 回归分析表明多个自变量对一个因变量的影响强度。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响。...分位数回归是统计和计量经济学中使用的一种回归分析。...分位数回归是估计一组回归变量X与被解释变量Y的分位数之间线性关系的建模方法。 OLS回归估计量的计算是基于最小化残差平方。 分位数回归估计量的计算也是基于一种非对称形式的绝对值残差最小化。...中位数回归的估计方法与最小二乘法相比,估计结果对离群值则表现的更加稳健,而且,分位数回归对误差项并不要求很强的假设条件,因此对于非正态分布而言,分位数回归系数估计量则更加稳健。...当变量的分布明显偏离正态分布或者存在异常值时,传统的最小二乘法回归就不那么有效了。然而分位数回归不受这些弊端的影响。此外,分位数回归满足单调变换不变性。

    3.4K40

    线性回归的这些细节,你都搞明白了吗?

    回归分析是一种广泛使用的统计工具,利用已有的实验数据,通过一个方程来定量的描述变量之间的关系,其中的变量可以分为两类 自变量,也称之为预测变量 因变量,也称之为响应变量 自变量可以有多个,而因变量只有一个...,回归的本质就是构建因变量和自变量之间的方程。...顾名思义,线性回归用线性方程来描述变量之间的关系,根据自变量的个数,又可以划分为一元线性回归和多元线性回归。这里的一元和多元指的就是自变量的个数。...其中intercept称之为截距,对应回归方程中的回归常数,对于height这个自变量,其回归系数为0.6746。...这里我们直接得到了最终的回归参数,其实在这里还有很多的细节,通过summary可以进行查看 ? 第一个是残差的分布情况,用五个数字来表示,分别是最小值,第一四分位数,中位数,第三四分位数,最大值。

    1.7K40
    领券