首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

转载:【AI系统】Tensor Core 基本原理

其次,这种转换可以减少重复的内存访问,因为在传统的卷积运算中,同一个输入元素可能会被多个卷积核重复使用。Im2Col 是计算机视觉领域中将图片转换成矩阵的矩阵列(Column)的计算过程。...Img2col 算法主要包含两个步骤,首先使用 Im2Col 将输入矩阵展开一个大矩阵,矩阵每一列表示卷积核需要的一个输入数据,其次使用上面转换的矩阵进行 Matmul 运算,得到的数据就是最终卷积计算的结果...在将卷积转换为矩阵乘法之后,多个这样的矩阵乘法计算可以被组织成单个更大的矩阵乘法运算来执行。...相较于 CUDA Core,Tensor Core 能够在每个时钟周期内执行更多的运算,特别是它可以高效地完成矩阵乘法和累加操作两种操作是深度学习中最频繁和计算密集的任务之一。...通过 Warp 层的卷积指令,CUDA 向外提供了一个 16x16x16 的抽象层,使得开发者可以通过一条指令完成多个 Tensor Core 的协同工作,实现高效的并行计算。

10110

一文读懂深度学习中的各种卷积 !!

将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...可以在水平5个位置和垂直3个位置扫描这样的核,总共就是5x3=15个位置,表示为下图中的点。在每个位置,会应用3次逐元素乘法,总共就是15x3=45次乘法。现在我们得到了一个3x5的矩阵。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

46510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一文读懂深度学习中的N种卷积

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    93520

    一文读懂 12种卷积方法

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    92130

    一文深入了解DeepSeek-R1:模型架构

    具体而言,在方程中使用单个权重矩阵,表示为 W^{DKV} ​。这里, W^{DKV} ​ 中的“D”代表下投影权重矩阵,反映了其在降低维度以实现高效注意力计算方面的作用。...在 MLA 中引入额外的权重矩阵不会导致内存和计算效率低下吗?...从本质上讲,MoE 遵循标准 Transformer 设计,但通过引入多个并行专家网络(FFN) 而不是单个密集 FFN来修改前馈层。其工作原理如下: 1....多个 FFN(而非一个) MoE 不使用单个共享的 FFN,而是使用多个并行训练的FFN 层(专家) 。 2....在此概念的基础上,DeepSeek-V3 整合了多标记预测 (MTP) 目标,使模型能够同时预测多个标记。这种方法使训练信号密集化,并能够更好地预先规划标记表示,从而提高复杂基准测试的性能。

    1K20

    以3D视角洞悉矩阵乘法,这就是AI思考的样子

    使用上面描绘的二层 FFN 示例的矩阵(适当转置后),看起来会是这样,C 现在是输入,B 是第一层,A 是第二层: 另外,除了箭羽的颜色(左侧为蓝色,右侧为红色),区分左右参数的第二个视觉提示是它们的方向...请记住,由于我们位于中间层(5 层),因此该注意力头的输入是一个中间表示,而不是原始 token 化文本。...但有趣的是,输入序列中的第一个向量是独特的,不仅打破了这些高幅度列的模式,而且几乎在每个位置都携带着非典型值(旁注:这里没有可视化,但这种模式反复出现在多个样本输入上)。...你可以在头脑中想象一下这种情况下的注意力层会是什么样子,这很有启发性 —— 单个嵌入行穿过一个巨大的平铺的权重平面。...根据这篇论文,这「允许我们通过在适应过程中优化密集层变化的秩分解矩阵来间接地训练神经网络中的一些密集层…… 同时保持预训练权重处于冻结状态。」

    40540

    YOLO 的“数学”实现

    第二步:层归一化 神经网络通常在归一化数据上表现更好。我们可以通过首先计算矩阵中的平均值(µ)来归一化输入。 接下来,可以计算所有元素与平均值的绝对差值。...我们将YOLO理想化为具有两个内核的单卷积层。 为了确保输出张量具有与输入相同的空间维度,我们在归一化输入上应用0填充。 然后可以通过元素乘法(⊙)和累加求和(Σ)将两个内核卷积到图像上。...第六步:展平 现在输入图像已经被过滤成一个更适合最终建模任务的抽象表示(实际上是通过几个卷积层,而不是本示例中的一个卷积层),可以通过展平将其转换为一个向量。...第七步:输出投影 可以使用一个密集网络(即矩阵乘法)将展平的矩阵投影到最终输出。YOLO的最终输出包括SxSxC类预测和SxSxBx5个边界框预测。因此,输出的形状必须为SxSx(C+Bx5)。...假设在前一步展平的输出长度为L,则密集网络的权重矩阵形状必须为Lx(SxSx(C+Bx5))。 在这个示例中,我们假设S为1,C为2,B为1。L是展平向量的长度,为18。

    15110

    一文读懂深度学习的各种卷积

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    91741

    在消费级GPU调试LLM的三种方法:梯度检查点,LoRA和量化

    为了实现这些适配器,他们利用线性层,如下面的等式所示,其中x (dimension: d)和h (dim: k)作为乘法前后的层,Wo作为预训练的权重,B和A作为新的权重矩阵。...矩阵B和A的维数分别为(d × r)和(r × k),且r << min(d, k)。 也就是说在不使训练过程复杂化的情况下,将新的密集层添加到现有的层上。...量化参数的完整性会导致性能下降,而在矩阵乘法过程中使用量化,结合混合精度分解和向量量化。在矩阵乘法过程中,从权重矩阵中提取包含异常值(高于阈值)的向量,从而产生两次乘法。...也就是说量化技术仅在推理(矩阵乘法)期间使用,这意味着实际上没有8位数字组成的更小的模型!由于这种技术实现,我们甚至得到了一个更大的模型!...这种技术可以访问以前无法装入GPU内存的大型模型 5、可以微调这个量化模型吗? 不行,因为这种技术只适用于推理,不适合训练。

    1.2K60

    DeepSeek开源周 Day03:从DeepGEMM看大模型算力提速的矩阵乘法

    该库不仅支持常规的密集矩阵乘法,还特别优化了混合专家模型(MoE)场景下的分组GEMM计算,成为DeepSeek-V3/R1训练和推理的核心动力。...它代表通用矩阵到矩阵乘法,它本质上就是按照字面意思来做,将两个输入矩阵相乘得到一个输出矩阵。它与在 3D 图形世界中习惯的矩阵运算的区别在于,它处理的矩阵通常非常大 。...卷积层 使用 GEMM 作为卷积层并不是一个显而易见的选择。卷积层将其输入视为二维图像,每个像素都有多个通道,就像具有宽度、高度和深度的经典图像一样。...输入图像和单个核如下所示: 每个核都是另一个三维数字数组,其深度与输入图像相同,但宽度和高度要小得多,通常为 7×7。为了产生结果,将核应用于输入图像上的点网格。...在应用核的每个点上,所有相应的输入值和权重都会相乘,然后相加以产生该点的单个输出值。

    16510

    【DL】一文读懂深度学习中的N种卷积

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    75010

    【AI系统】Tensor Core 基本原理

    其次,这种转换可以减少重复的内存访问,因为在传统的卷积运算中,同一个输入元素可能会被多个卷积核重复使用。Im2Col 是计算机视觉领域中将图片转换成矩阵的矩阵列(Column)的计算过程。...Img2col 算法主要包含两个步骤,首先使用 Im2Col 将输入矩阵展开一个大矩阵,矩阵每一列表示卷积核需要的一个输入数据,其次使用上面转换的矩阵进行 Matmul 运算,得到的数据就是最终卷积计算的结果...在将卷积转换为矩阵乘法之后,多个这样的矩阵乘法计算可以被组织成单个更大的矩阵乘法运算来执行。...相较于 CUDA Core,Tensor Core 能够在每个时钟周期内执行更多的运算,特别是它可以高效地完成矩阵乘法和累加操作两种操作是深度学习中最频繁和计算密集的任务之一。...通过 Warp 层的卷积指令,CUDA 向外提供了一个 16x16x16 的抽象层,使得开发者可以通过一条指令完成多个 Tensor Core 的协同工作,实现高效的并行计算。

    59810

    一文读懂深度学习的各种卷积

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    94120

    一文读懂深度学习中的各种卷积

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    75120

    以3D视角洞悉矩阵乘法,这就是AI思考的样子

    使用上面描绘的二层 FFN 示例的矩阵(适当转置后),看起来会是这样,C 现在是输入,B 是第一层,A 是第二层: 另外,除了箭羽的颜色(左侧为蓝色,右侧为红色),区分左右参数的第二个视觉提示是它们的方向...请记住,由于我们位于中间层(5 层),因此该注意力头的输入是一个中间表示,而不是原始 token 化文本。...但有趣的是,输入序列中的第一个向量是独特的,不仅打破了这些高幅度列的模式,而且几乎在每个位置都携带着非典型值(旁注:这里没有可视化,但这种模式反复出现在多个样本输入上)。...你可以在头脑中想象一下这种情况下的注意力层会是什么样子,这很有启发性 —— 单个嵌入行穿过一个巨大的平铺的权重平面。...根据这篇论文,这「允许我们通过在适应过程中优化密集层变化的秩分解矩阵来间接地训练神经网络中的一些密集层…… 同时保持预训练权重处于冻结状态。」

    41360

    【DL】一文读懂深度学习中的N种卷积

    将 2×2 的输入上采样成 5×5 的输出 观察上述例子中的转置卷积能帮助我们构建起一些直观认识。但为了泛化其应用,了解其可以如何通过计算机的矩阵乘法实现是有益的。...从这一点上我们也可以看到为何「转置卷积」才是合适的名称。 在卷积中,我们定义 C 为卷积核,Large 为输入图像,Small 为输出图像。经过卷积(矩阵乘法)后,我们将大图像下采样为小图像。...卷积的矩阵乘法:将 Small 输入图像(2×2)转换为 Large 输出图像(4×4) 这里可以看到,我们执行了从小图像到大图像的上采样。这正是我们想要实现的目标。现在。...我们可以在水平 5 个位置和垂直 3 个位置扫描这样的核。总共就是 5×3=15 个位置,表示为下图中的点。在每个位置,会应用 3 次逐元素乘法。总共就是 15×3=45 次乘法。...相比于在单个 GPU 上完成所有任务,这样的在多个 GPU 上的模型并行化能让网络在每个步骤处理更多图像。人们一般认为模型并行化比数据并行化更好。后者是将数据集分成多个批次,然后分开训练每一批。

    65120

    用Versal FPGA加速矩阵乘法

    该论文主要围绕着深度学习应用对密集矩阵乘法(Matrix Multiply, MM)的大量需求展开。...有些工作如AMD DPU和Mocha探索了通过在设备上分配多个重复加速器的任务级并行性,但没有对每个加速器进行专门设计。 多种加速器设计的尝试: DNNBuilder为特定层设计了专用加速器。...作者又详细描述了如何在Versal ACAP架构上设计单个矩阵乘法加速器,并针对数据流和映射策略进行了阐述。...这个设计在1536×128×1024的原生数据块大小上运行,处理大型方阵矩阵乘法时可以达到2.8 TFLOPs的吞吐量。...通过上述设计和优化,CHARM旨在解决Versal ACAP架构上密集矩阵乘法加速器的效率和资源分配问题,尤其关注于处理大小不一的矩阵乘法操作,以提高整体系统性能。

    38210

    从GPU的内存访问视角对比NHWC和NCHW

    卷积作为GEMM GEneral Matrix to Matrix Multiplication (通用矩阵的矩阵乘法) 卷积可以使用基于变换的方法来实现,如快速傅立叶变换,它将卷积转换为频域的元素乘法...,或者使用无变换的方法,如矩阵乘法,其中输入和滤波器(卷积核)被平面化并使用矩阵操作组合以计算输出特征映射。...但是:fft是内存密集型的,因为它们需要额外的内存来存储转换后的矩阵。并且fft的计算成本很高,特别是在时域和频域之间来回转换数据时,涉及操作开销。 而卷积运算的一般矩阵乘法是这样的。...在上面的隐式GEMM中,每个矩阵乘法可以分成更小的矩阵乘法或块。然后每个块都由SMs同时处理,以加快过程。 有了上面的计算过程,还需要存储张量,下面我们看看张量是如何在GPU中存储的。...在这种情况下,GPU将需要执行多个事务来检索所有必要的数据 在GEMM的情况下,无论滤波器的高度和宽度如何,我们都可以确保读取给定空间位置的所有通道信息。

    1.6K50

    为内存塞不下Transformer犯愁?OpenAI应用AI研究负责人写了份指南

    这种方法会直接学习低位表示的模型权重,并以额外的训练时间和计算为代价获得更好的性能。 最直接的方法是在与预训练数据集相同或代表预训练数据集的训练数据集上量化后微调模型。...(1) 对矩阵中的列进行排列可以在剪枝过程中提供更多可能,以保持参数的数量或满足特殊限制,如 N:M 稀疏性。只要两个矩阵对应的轴按相同的顺序排列,矩阵乘法的结果就不会改变。...当在不同网络层上应用稀疏化时,Transformer 模型解码单个 token(非批量推理)的速度。 稀疏 FFN 层:每个 FFN 层包含 2 个 MLP 和中间的一个 ReLU。...为了确保每个细分都可以访问嵌入的任何部分,Scaling Transformer 引入了一个乘法层(即,一个乘法层将来自多个神经网络层的输入按元素相乘),它可以表示任意排列,但包含的参数少于全连接层。...给定输入向量  ,乘法层输出  : 乘法层的输出是一个大小为  的张量。然后由二维卷积层对其进行处理,其中 length 和 S 被视为图像的高度和宽度。

    1.9K30

    高效Attention引擎是怎样炼成的?陈天奇团队FlashInfer打响新年第一枪!

    再看Speculative Decoding,多个草稿小模型生成的token序列通常组织成token tree的形式,表示成矩阵时是稀疏的。...这样一来,显卡就可以直接加载整块的数据(比如16 * 16),来填满自己的tensor core,进行矩阵乘法。 有了BSR,我们再来看下之前提到的几种Attention。...Paged Attention的block可以直接对应到BSR的block,如下图所示,让Bc = 1。而query tile size(Br)设为4保证矩阵乘法的硬件利用率。...拿捏定制化Attention 作者为FlashAttention开发了CUDA/CUTLASS模板,专为密集矩阵和块稀疏矩阵设计,兼容从Turing到Hopper架构的英伟达GPU。...单个MMA指令可以指定可以块稀疏矩阵中的不同块作为Tensor core的输入,下图展示了FlashInfer如何将tiles加载到共享内存中: 对于稀疏的KV-Cache,地址使用BSR矩阵的indices

    7200
    领券