中兴智能视觉大数据报道:如今,我们已经习惯被各种新技术刷屏,刷手机、刷指纹、刷脸……相信小伙伴们对电影中这样的场景印象深刻:目标人物走在火车站拥挤的人群中,在一眨眼的工夫被识别出来,手机在第一时间识别发出警报,屏幕上已经显示出姓名和信息……
人脸识别既是一项起源较早的技术,又是一门焕发着活跃生命力、充满着学术研究魅力的新兴技术领域。随着近些年人工智能、大数据、云计算的技术创新幅度的增大,技术更迭速度的加快,人脸识别作为人工智能的一项重要应用,也搭上了这3辆“快车”,基于人脸识别技术的一系列产品实现了大规模落地。
自七十年代以来,人脸识别已经成为了计算机视觉和生物识别领域被研究最多的主题之一。基于人工设计的特征和传统机器学习技术的传统方法近来已被使用非常大型的数据集训练的深度神经网络取代。在这篇论文中,我们对流行的人脸识别方法进行了全面且最新的文献总结,其中既包括传统方法(基于几何的方法、整体方法、基于特征的方法和混合方法),也有深度学习方法。
一所德国大学的两位科学家研制出一种能够在完全黑暗环境下识别人脸的工具。这项技术根据人脸的热效应来识别,并将红外热成像和普通的照片做匹配。它采用了深度神经网络系统来处理图像,然后在弱光甚至黑暗环境下识别人脸。然而,目前这一技术还未投入商业化使用,开发者之一的SaquibSarfraz博士也表示近期没有推广计划。 德国卡尔斯鲁厄理工学院的Sarfraz博士和他的同事Rainer Stiefelhagen博士共同开发这个项目,他告诉BBC记者:“我们在人脸识别领域已经深耕多年,对这方面问题有着浓厚的兴趣。我们所
人脸识别技术原理简单来讲主要是三大步骤:一是建立一个包含大批量人脸图像的数据库,二是通过各种方式来获得当前要进行识别的目标人脸图像,三是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选。根据人脸识别技术原理具体实施起来的技术流程则主要包含以下四个部分,即人脸图像的采集与预处理、人脸检测、人脸特征提取、人脸识别和活体鉴别。
之前机器之心报道过一个跨平台人脸识别项目,在 CPU 上就能轻松跑出 1000FPS。这次介绍的项目也是一个轻量级人脸识别项目。不同的是,该项目在保持较小参数量的前提下,识别精度要高很多,并且只需要 OpenCV 和 PyTorch 就能运行。
一所德国大学的两位科学家研制出一种能够在完全黑暗环境下识别人脸的工具。这项技术根据人脸的热效应来识别,并将红外热成像和普通的照片做匹配。它采用了深度神经网络系统来处理图像,然后在弱光甚至黑暗环境下识别人脸。然而,目前这一技术还未投入商业化使用,开发者之一的SaquibSarfraz博士也表示近期没有推广计划。 德国卡尔斯鲁厄理工学院的Sarfraz博士和他的同事Rainer Stiefelhagen博士共同开发这个项目,他告诉BBC记者:“我们在人脸识别领域已经深耕多年,对这方面问题有着浓厚的兴趣。我们所展
人脸识别作为一种生物特征识别技术,具有非侵扰性、非接触性、友好性和便捷性等优点。早在二十世纪初期,人脸识别已经出现,于二十世纪中期,发展成为独立的学科。人脸识别真正进入应用阶段是在90年代后期。人脸识别属于人脸匹配的领域,人脸匹配的方法主要包括特征表示和相似性度量。
选自arXiv 机器之心编译 机器之心编辑部 人脸识别是机器学习社区研究最多的课题之一,以 3D 人脸识别为代表的相关 ML 技术十年来都有哪些进展?这篇文章给出了答案。 近年来,人脸识别的研究已经转向使用 3D 人脸表面,因为 3D 几何信息可以表征更多的鉴别特征。近日,澳大利亚迪肯大学的三位研究者回顾了过去十年发展起来的 3D 人脸识别技术,总体上分为常规方法和深度学习方法。 从左至右依次是迪肯大学信息技术学院博士生 Yaping Jing、讲师(助理教授) Xuequan Lu 和高级讲师 Sh
中国图象图形学学会围绕「生物特征识别」这一主题,在中科院自动化所成功举办了第四期「CSIG 图像图形学科前沿讲习班」。
大数据文摘记者谭婧、魏子敏 安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势? 10月29日,2017年第十六届中国国际公共安全博览会(CPSE安博会)在中国深圳会展中心开幕。在政府管理论坛上,清华大学媒体大数据认知计算研究中心主任王生进教授发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多
1 月 13 日,在浙江卫视播出的大型科技综艺节目《智造将来》中,代表支付宝最新研发进展的生物识别系统「310099」首次亮相,并成功完成挑战:从 500 位蒙面观众中找到目标人物。
github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。
以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如上的发展趋势可以知道,现在的主要研究方向
如果你觉得好的话,不妨分享到朋友圈。 以往的人脸识别主要是包括人脸图像采集、人脸识别预处理、身份确认、身份查找等技术和系统。现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测、行人跟踪、甚至到了动态物体的跟踪。由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理。而且算法已经由以前的Adaboots、PCA等传统的统计学方法转变为CNN、RCNN等深度学习及其变形的方法。现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界、工业界和国家的支持。 首先看看现在的研究现状。如
自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。
自七十年代以来,人脸识别已经成为了计算机视觉和生物识别领域研究最多的主题之一。近年来,传统的人脸识别方法已经被基于卷积神经网络(CNN)的深度学习方法代替。目前,人脸识别技术广泛应用于安防、商业、金融、智慧自助终端、娱乐等各个领域。而在行业应用强烈需求的推动下,动漫媒体越来越受到关注,动漫人物的人脸识别也成为一个新的研究领域。
自动人脸识别的经典流程分为三个步骤:人脸检测、面部特征点定位(又称Face Alignment人脸对齐)、特征提取与分类器设计。一般而言,狭义的人脸识别指的是"特征提取+分类器"两部分的算法研究。 在深度学习出现以前,人脸识别方法一般分为高维人工特征提取(例如:LBP,Gabor等)和降维两个步骤,代表性的降维方法有PCA, LDA等子空间学习方法和LPP等流行学习方法。在深度学习方法流行之后,代表性方法为从原始的图像空间直接学习判别性的人脸表示。 一般而言,人脸识别的研究历史可以分为三个
在人脸识别应用中,很多场景能够获取某一个体的多幅人脸图像的集合(比如在监控视频中),使用人脸图像集来做识别,这个问题被称为基于模板的人脸识别(template-based face recognition)。
【编者按】微软亚洲研究院在人脸识别领域已经耕耘了近20年时间,从最早的子空间方法,到后来的局部描述子方法,再到现在的深度学习方法,历经了所有人脸识别技术的主流研究方法。微软亚洲研究院视觉计算组首席研究员孙剑博士撰写了本文,基于近期的两项人脸识别应用,深入浅出的介绍了这项应用背后的深度学习方法、人脸识别基础环节等内容。 近期,微软发布了一款有趣的应用 ——“微软我们”(TwinsOrNot.net),只需任意上传两张人物照片,就可以知道他们长的有多像,比如,测试你是否和某个明星长得很像,或者夫妻/男女朋友是不
几天前一篇arXiv新上论文《Face Recognition: From Traditional to Deep Learning Methods》,对人脸识别技术发展经历的几个时期进行了分类,为我们展开了计算机视觉中最为活跃的人脸识别技术发展波澜壮阔的四十年。
我们对2020年全部计算机视觉综述论文进行了分方向梳理,本文为人脸识别方向,包括人脸识别、检测、面部反欺骗、3D人脸重建、deepfake等方向。
这是人脸识别系列的第5篇文章,前4篇文章可以在公众号的人脸识别栏里找到,这篇文章主要是解析CVPR 2014年的经典人脸识别论文DeepID1算法。论文的地址如下:http://mmlab.ie.cuhk.edu.hk/pdf/YiSun_CVPR14.pdf 。
昨天,雷锋网AI掘金志其中的一个安防社群因为一个话题引发了不小的争论:“AI产品能否高效地实时识别出戴口罩的人是谁?”
以前人脸识别在很多人的印象中,仅存在于虚拟的科幻电影中。但如今随着技术的快速发展,人脸识别技术已走进每家每户,平时进小区、过安检、用一下手机……都免不了需要“刷”脸。人脸识别技术给我们的生活制造了许多便利,但与此同时,也给我们带来了诸多安全挑战。
雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑
https://mp.weixin.qq.com/s/RA8S6uzzJ_moxq8T5thqwA
导读:ECAI 2016是欧洲展示AI科学成果的最佳场所,大会为研究人员提供了很好的机会,去介绍和听取当代最优秀的人工智能研究成果。 人脸识别的随机典型相关判别分析(Randomized Canoni
【导读】该文章被Trans收录。无约束环境下的局部人脸识别(PFR)是一项非常重要的任务,尤其是在视频监控和移动设备等由于遮挡、视野外、大视角等原因容易捕捉到局部人脸图像的情况下。然而,到目前为止,很少有人关注PFR,因此,识别任意patch的问题的人脸图像在很大程度上仍未解决。提出了一种新的局部人脸识别方法——动态特征匹配(DFM),该方法将全卷积网络和稀疏表示分类(SRC)相结合,解决了不同人脸大小的局部人脸识别问题。DFM不需要局部人脸相对于整体人脸的先验位置信息。通过共享计算,对整个输入图像进行一次特征图的计算,大大提高了速度。
人脸识别技术已经成为现代技术的重要组成部分,被广泛应用于安全监控、身份验证、智能门禁等领域。
人脸识别是当下最热的领域之一。这两年尤其在安保系统、天眼系统、犯罪分子抓捕系统、人脸锁、人脸考勤机、人脸支付等等领域迅速发展。 本文总结8 篇人脸识别相关论文,包含低光条件下、极端姿势下、人脸关键点检测等。 1. A 3D GAN for Improved Large-pose Facial Recognition 本文介绍一种从自然图像中学习非线性纹理模型的方法,它可以用于生成具有完全分离姿势的合成身份的图像,不需要专门捕获的面部纹理扫描。 通过用合成的三维 GAN 图像增强数据集,large-pose
李杉 若朴 发自 凹非寺 量子位 报道 | 公众号 QbitAI 三星的新手机又有点问题…… 刚刚发布的Galaxy S8配备了新的面部识别功能,只要盯着前置摄像头即可解锁手机。外媒的简短测评显示,这项功能的速度甚至超过指纹识别。 燃鹅,很快有用户发现,虽然速度有了,但这项功能并不安全。 根据已经公布的视频演示,只需要一张照片,即可成功骗过Galaxy S8的面部识别。虽然花费的时间略长,但确实有效。 有意思的是,可以用S8拍出的照片欺骗另一台S8手机。 在这段视频发布后,三星发言人在声明中表示:面部识别不
人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。
在现实生活中,许多因素可能会影响人脸识别系统的识别性能,例如大姿势,不良光照,低分辨率,模糊和噪声等。为了应对这些挑战,之前的人脸识别方法通常先把低质量的人脸图像恢复成高质量人脸图像,然后进行人脸识别。然而,这些方法大多是阶段性的,并不是解决人脸识别的最优方案。
本文来自旷视研究院,作者:闫东。AI 科技评论获授权转载。如需转载,请联系旷视研究院。
人脸识别是计算机视觉中的热门研究领域,通过对人脸图像或视频进行分析和比对,实现对个体身份的自动识别。人脸特征提取是人脸识别中的重要步骤,它用于从人脸图像中提取出具有辨别性的特征表示。本文将以人脸识别和特征提取为中心,为你介绍使用 OpenCV 进行人脸识别和特征提取的基本原理、方法和实例。
为了对抗未经授权的人脸识别行为,反人脸识别工具应运而生。这些工具针对人脸识别系统的不同组成部分,包括数据收集、模型训练和实时识别等方面,旨在防止未经授权的人脸识别。尽管大多数工具仍处于实验原型阶段,但其中一些工具已经发布了公共软件版本,并受到了广泛媒体关注,例如Fawkes、LowKey和CV Dazzle等。这些反识别工具在技术方面存在很大差异,并且针对人脸识别系统的不同工作阶段提供解决方案。为了更好地了解这些工具的特点、突显性能权衡、并确定未来的发展方向,有必要对这些工具进行综合分析和研究。
LFW数据集(Labeled Faces in the Wild)是目前用得最多的人脸图像数据库。该数据库共13,233幅图像,其中5749个人,其中1680人有两幅及以上的图像,4069人只有一幅图像。图像为250*250大小的JPEG格式。绝大多数为彩色图,少数为灰度图。该数据库采集的是自然条件下人脸图片,目的是提高自然条件下人脸识别的精度。该数据集有6中评价标准:
人脸识别(Face Recognition),是指对输入的图像或视频,判断其中是否存在人脸,进而依据人脸的面部特征,自动进行身份识别。 其过程可分为人脸检测、人脸特征提取和人脸识别三个阶段。人脸识别是身份认证的重要生物识别技术,也是计算机视觉领域研究最多的课题之一,经过近30年的研究,在受控和均匀的可见光条件下的传统人脸识别得到了很大的发展,目前已广泛应用于军事、金融、公共安全和日常生活等领域。
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇《图片人脸检测——OpenCV版(二)》 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置
继神经网络推理框架 ncnn、TNN,动作检测算法 DBG,通用目标检测算法 OSD,人脸检测算法 DSFD、人脸属性算法 FAN等众多优秀的框架、算法开源后,腾讯优图实验室又有一项人脸识别算法研究项目——TFace正式拥抱开源啦!
DeepFace:4.4M训练集,训练6层CNN + 4096特征映射 + 4030类Softmax,综合如3D Aligement, model ensembel等技术,在LFW上达到97.35%。
领取专属 10元无门槛券
手把手带您无忧上云