各位小伙伴们劳动节快乐,利用假期的这几天的时间,在王者荣耀游戏时间之余研究了一下一直困扰我很久的多重共线性,所以今天能够用一篇文章来讲一讲我理解的多重共线性,并且希望大家可以给我多多指教,话不多说,马
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据。
最近我们被客户要求撰写关于广义线性模型(GLM)的研究报告,包括一些图形和统计输出。
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据
我们正和一位朋友讨论如何在R软件中用GLM模型处理全国的气候数据。本文获取了全国的2021年全国的气候数据(点击文末“阅读原文”获取完整代码数据)。
多元线性回归分析同样由函数lm()完成,但参数formula的表达式应表示为多元形式
当回归模型中两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性,也就是说共线性的自变量提供了重复的信息。
最近在看《R数据分析——方法与案例详解》,感觉很不错,本书精华是统计学理论与R的结合,尤其是多元统计部分,因为本书其中一个作者朱建平是厦大统计系教授,曾编写过《应用多元统计分析》一书,可能有同学用过这本教材。《R数据分析》的理论部分建议研究透彻,公式部分最好都演算一遍。因为已经看过《R inaction》,所以笔记就只做我比较感兴趣的部分,也是我认为比较重要的部分。
方差膨胀系数(variance inflation factor,VIF)是衡量多元线性回归模型中复 (多重)共线性严重程度的一种度量。它表示回归系数估计量的方差与假设自变量间不线性相关时方差相比的比值。
即两个自变量之间的关系是一条直线, 称之为共线性,当三个或以上自变量之间存在共线性时,称之为多重共线性,数据公式表示如下
多重共线性是指自变量之间存在线性相关关系,即一个自变量可以是其他一个或几个自变量的线性组合。
A1 正交假定:误差项矩阵与X中每一个x向量都不相关 高斯-马尔科夫定理:若满足A1和A2假定,则采用最小二乘法得到回归参数估计是最佳线性无偏估计 方程估计值b1和b2可以看做偏回归系数,也是相应自变量对y的一种偏效应 偏效应:在控制变量下,各自变量X对因变量Y的净效应 残差项:针对具体模型而言,被定义为样本回归模型中观测值与预测值之差 误差项:针对总体真实回归模型而言,它由一些不可观测因素或测量误差所引起 纳入无关自变量并不影响OLS估计结果的无偏性,但是如果无关自变量如果与其他自变量相关,会导致相应回归系数(b1,b2)的标准误增大;换句话说,如果总体中无关自变量对y没有偏效应,那么把它加入模型只可能增加多重共线性问题,从而减弱估计的有效性。 因此,不要加入无关自变量,原因是
多元线性回归是我们在数据分析中经常用到的一个方法,很多人在遇到多维数据时基本上无脑使用该方法,而在用多元线性回归之后所得到的结果又并不总是完美的,其问题实际上并不出在方法上,而是出在数据上。当数据涉及的维度过多时,我们就很难保证维度之间互不相关,而这些维度又都对结果产生一定影响,当一组维度或者变量之间有较强的相关性时,就认为是一种违背多元线性回归模型基本假设的情形。今天我们就讲解一下如何用VIF方法消除多维数据中多重共线性的问题。
多重共线性是指自变量彼此相关的一种情况。当你拟合模型并解释结果时,多重共线性可能会导致问题。数据集的变量应该是相互独立的,以避免出现多重共线性问题。
在进行线性回归分析时,容易出现自变量(解释变量)之间彼此相关的现象,我们称这种现象为多重共线性。
线性回归是一种统计方法,用于研究因变量 𝑌 和一个或多个自变量 𝑋 之间的线性关系。其理论依据主要基于以下几个方面:
机器学习是一种解决不能明确编码的问题的方法,例如,分类问题。机器学习模型将从数据中学习一种模式,因此我们可以使用它来确定数据属于哪个类。
上篇文章《简单而强大的线性回归详解》(点击跳转)详细介绍了线性回归分析方程、损失方程及求解、模型评估指标等内容,其中在推导多元线性回归使用最小二乘法的求解原理时,对损失函数求导得到参数向量 的方程式
方差膨胀系数是衡量多元线性回归模型中多重共线性严重程度的一种度量。 它表示回归系数估计量的方差与假设自变量间不线性相关时方差相比的比值。
本文将讨论多重共线性的相关概念及利用python自动化消除多重共线性的方法,以供参考,欢迎拍砖
VIF可以用来度量多重共线性问题, V I F j = 1 1 − R j 2 \quad \mathrm{VIF}_{j}=\frac{1}{1-R_{j}^{2}} VIFj=1−Rj21 式子中, R j 2 R_{j}^{2} Rj2是第 j j j个变量在所有变量上回归时的确定系数。 如果VIF过大(比如大于5或10),则意味着存在多重共线性问题。关于多重共线性更多内容可以参考往期文章https://blog.csdn.net/weixin_45288557/article/details/111769464
相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系;
二、方差膨胀系数(VIF) VIF的取值大于1,VIF值越接近于1,多重共线性越轻,反之越重。通常以10作为判断边界。当VIF<10,不存在多重共线性;当10<=VIF<100,存在较强的多重共线性;当VIF>=100, 存在严重多重共线性。 容忍度的值界于0至1之间,当容忍度值较小时,表示此自变量与其他自变量之间存在共线性。 容忍度~VIF的倒数
来源:知乎 良好研究方法 作者:求知鸟 pythonic生物人本文约2400字,建议阅读5分钟本文为你总结统计学常犯错误。 1. 变量之间关系可以分为两类: 函数关系:反映了事务之间某种确定性关系 相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系; 2. 为什么要对相关系数进行显著性检验? 实际上完全没有关系的变量,在利用样本数据进行计算时也可能得到一个较大的相关系数值(尤其是时间序列数值) 当样本数较少,相关系数就很大。当样本量从100减少到40后,相关系数大概
来源:知乎 良好研究方法 作者:求知鸟 pythonic生物人 本文约2400字,建议阅读5分钟本文为你总结统计学常犯错误。 1. 变量之间关系可以分为两类: 函数关系:反映了事务之间某种确定性关系 相关关系:两个变量之间存在某种依存关系,但二者并不是一一对应的;反映了事务间不完全确定关系; 2. 为什么要对相关系数进行显著性检验? 实际上完全没有关系的变量,在利用样本数据进行计算时也可能得到一个较大的相关系数值(尤其是时间序列数值) 当样本数较少,相关系数就很大。当样本量从100减少到40后,相关系数
r的取值范围是[-1,1],r=1表示完全正相关!r=-1表示完全负相关!r=0表示完全不相关。
模型自变量增加后,即便使用聚类等手段进行变量压缩,也不能将自变量的相关性完全剔除,这便会导致具有相关性的自变量溜进模型。由于自变量间关系不同,建模所选择的策略也会不同,模型的结果相对也会有较大差异,SAS中一般会使用selection参数进行变量控制,这个参数即为变量选择提供准则与方法。
共线性问题指的是输入的自变量之间存在较高的线性相关度。共线性问题会导致回归模型的稳定性和准确性大大降低,另外,过多无关的维度计算也很浪费时间
前面几天阐述了线性回归的最小二乘法(OLS)在做回归时,一致地看待每一个样本点,是典型的无偏估计,会得到一个使得残差最小的权重参数。然而,在面对一堆数据集存在多重共线性时,OLS 就变得对样本点的误差
在多元线性回归中,多个变量之间可能存在多重共线性,所谓多重,就是一个变量与多个变量之间都存在线性相关。首先来看下多重共线性对回归模型的影响,假设一下回归模型
机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理解,以便能够更好地应对机器学习笔试包括面试。红色石头准备在公众号连载一些机器学习笔试题系列文章,希望能够对大家有所帮助!
如果将所有自变量用于线性回归或逻辑回归的建模,将导致模型系数不能准确表达自变量对Y的影响。
例如,如果你的模型包括2个变量,即工作经验年数和工资,那么在你的模型中就很有可能存在多重共线性。原因是从常识上讲,经验越丰富,薪水越高。
探索性数据分析、数据清洗与预处理和多元线性回归模型构建完毕后,为提升模型精度及其稳健性,还需进行许多操作。方差膨胀因子便是非常经典的一步,原理简单,实现优雅,效果拔群。
多重共线性可用统计量VIF(Variance Inflation Factor,方差膨胀因子)进行检测。VIF的平 方根表示变量回归参数的置信区间能膨胀为与模型无关的预测变量的程度(因此而得名)。car 包中的vif()函数提供VIF值。一般原则下, vif >2就表明存在多重共线性问题。
上面只是针对平均支出数据取对数,下面对收入数据也取对数,使得二者增加的百分比值大致一样。
前面我们讲了一元线性回归,没看过的可以先去看看:一元线性回归分析。这一篇我们来讲讲多元线性回归。一元线性回归就是自变量只有一个x,而多元线性回归就是自变量中有多个x。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/81162774
来源:Deephub Imba本文约5000字,建议阅读10分钟本文将介绍如何为成功的面试做准备的,以及可以帮助我们面试的一些资源。 在这篇文章中,将介绍如何为成功的面试做准备的,以及可以帮助我们面试的一些资源。 代码开发基础 如果你是数据科学家或软件开发人员,那么应该已经知道一些 Python 和 SQL 的基本知识,这对数据科学家的面试已经足够了,因为大多数的公司基本上是这样的——但是,在你的简历中加入 Spark 是一个很好的加分项。 对于 SQL,你应该知道一些最简单的操作,例如: 从表中选择
回归一直是个很重要的主题。因为在数据分析的领域里边,模型重要的也是主要的作用包括两个方面,一是发现,一是预测。而很多时候我们就要通过回归来进行预测。关于回归的知识点也许不一定比参数检验,非参数检验多,但是复杂度却绝对在其上。回归主要包括线性回归,非线性回归以及分类回归。本文主要讨论多元线性回归(包括一般多元回归,含有虚拟变量的多元回归,以及一点广义差分的知识)。请大家不要觉得本人偷奸耍滑,居然只有一个主题,两个半知识点。相信我,内容会很充实的。 对于线性回归的定义主要是这样的:线性回归,是基于最小
由线性回归(一)^1,我们通过数学中的极值原理推导出了一元线性回归的参数估计和多元线性回归的参数估计的拟合方程计算方法。同时为了检验拟合质量,我们引入了两种主要检验:
关于SPSS数据预处理 拿到一份数据,或者在看到国内外某个学者的文章有想法而自己手里的数据刚好符合这个想法可以做时,在整理好数据后不要急于建模。一定要对数据做缺失值处理、异常值处理。在数据预处理的基础上再进一步建模,否则可能得到错误的结果。 心得1:数据预处理怎么做。 一是 缺失值的处理。我个人有几个看法: 数据样本量足够大,在删除缺失值样本的情况下不影响估计总体情况,可考虑删除缺失值; 二是数据样本量本身不大的情况下,可从以下两点考虑:1是采用缺失值替换,SPSS中具体操作为“转换”菜单下的“替换缺失值
从Logistic回归开始,然后尝试Tree Ensembles和/或Neural Networks。 奥卡姆的剃刀原理:使用最简单的算法,可以满足您的需求,并且只有在严格需要的情况下才用更复杂的算法。 根据我自己的经验,只有神经网络和梯度增强决策树(GBDT)正在工业中广泛使用。 我目睹Logistic回归和随机森林被弃用不止一次(这意味着它们是好的开始)。 从来没有人听说有人在公司中讨论SVM。
回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将总结 10 个重要的回归问题和5个重要的回归问题的评价指标。
读者问:“我听说在某些回归算法中,如岭回归和LASSO,数据标准化或归一化非常重要。但是,我不太清楚什么时候以及为什么需要进行这些步骤。方便大概解释一下吗?”
1.在构建一个决策树模型时,我们对某个属性分割节点,下面四张图中,哪个属性对应的信息增益最大?
第二天100天搞定机器学习|Day2简单线性回归分析,我们学习了简单线性回归分析,这个模型非常简单,很容易理解。实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept、normalize、copy_X、n_jobs。然后介绍了LinearRegression的几个用法,fit(X,y)、predict(X)、score(X,y)。最后学习了matplotlib.pyplot将训练集结果和测试集结果可视化。
回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将介绍回归分析概念、7种重要的回归模型、10 个重要的回归问题和5个评价指标。
如果你是数据科学家或软件开发人员,那么应该已经知道一些 Python 和 SQL 的基本知识,这对数据科学家的面试已经足够了,因为大多数的公司基本上是这样的——但是,在你的简历中加入 Spark 是一个很好的加分项。
来源:机器学习研习院本文约3200字,建议阅读10+分钟本文为你总结10个重要的回归问题和5个重要的回归问题评价指标。 回归分析为许多机器学习算法提供了坚实的基础。在这篇文章中,我们将总结 10 个重要的回归问题和5个重要的回归问题的评价指标。 一、线性回归的假设是什么? 线性回归有四个假设: 线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。 独立性:特征应该相互独立,这意味着最小的多重共线性。 正态性:残差应该是正态分布的。 同方差性:回归线周围数据点的
领取专属 10元无门槛券
手把手带您无忧上云