大数据作为当下最为热门的事件之一,其实已经不算是很新鲜的事情了。如果是三五年前在讨论大数据,那可能会给人一种很新鲜的感觉。大数据作为当下最为重要的一项战略资源,已经是越来越得到国家和企业的高度重视,我们从大数据被上升到国家战略层面就可窥见一二!
昨天(5月28号)由社科文献出版社初版的《大数据蓝皮书:中国大数据发展报告No.2》正式发布了。以“数化万物 智在融合”为主题的中国国际大数据产业博览会也京举行中。基本可以预见,在接下来的一段时期内关于大数据应用开发又将进入到一个新的阶段。
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。
在大数据的风口,起飞的为什么是360?这也许是很多人的疑问,作为大数据业界的弄潮儿,360大数据平台是如何演进的,QDAS是缘何诞生,以及再次变革的原因又是什么?
大数据在政务当中的应用对于提高问题解决的效率可谓大有帮助,但政务大数据平台的应用开发远不止提高问题解决效率这么简单。当然,作为大数据平台应用的开发者来说,我们要做的是还是从底层的技术层面做好解决方案。关于政务大数据平台的解决方案此前有分享过智慧人社的和城市智慧停车的大数据平台解决方案,本篇给大家分享一个新的政务大数据平台管理案例——大快搜索的城市数据运河政务大数据管理运营平台。
前面已经给大家讲了《从0到1搭建大数据平台之数据采集系统》、《从0到1搭建大数据平台之调度系统》,今天给大家讲一下大数据平台计算存储系统。大数据计算平台目前主要都是围绕着hadoop生态发展的,运用HDFS作为数据存储,计算框架分为批处理、流处理。
大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战。Hadoop作为一个开源的分布式并行处理平台,以其高拓展、高效率、高可靠等优点越来越受到欢迎。这同时也带动了hadoop商业版的发行。这里就通过大快DKhadoop为大家详细介绍一下hadoop大数据平台架构内容。
5月8日,作为受邀嘉宾,参加了Intel与Cloudera在北京中国大饭店新闻发布会,两家公司宣布战略合作,该消息成为继Intel宣布放弃大数据平台之后的另外一个热点新闻。对于Intel的放弃早在预料之中,对于Intel与Cloudera合作也在意料之中,但是没有想到的是居然那么快。壮士断腕的Intel反倒让我看出几分勇气可嘉来,Cloudera的顺势而为,也被我所认同,Intel借助Cloudera的技术能力,Cloudera借用Intel的商务平台,然后彼此合作真的就能够成功?换句话说,就一定能在中国成功吗?倒是需要时间的检验?因为到现在为止,大数据应用其实已经不再只是一个平台问题,而是如何与业务应用相结合的问题。
什么是大数据?进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB(1MB大约等于一百万字节)、GB(1024MB)、TB(1024GB),一直向上攀升,目前,PB(等于1024TB)级的数据系统已经很常见,随着移动个人数据、社交网站、科学计算、证券交易、网站日志、传感器网络数据量的不断加大,国内拥有的总数据量早已超出 ZB(1ZB=1024EB,1EB=1024PB)级别。
大数据、区块链可以说近几年互联网非常火爆的风口了,发展真可谓是蓬勃向上。围绕大数据进行的行业变革、创新已经不仅仅是趋势,而是真实在进行中。大数据技术对各行业的重要性不言而喻,15年政府下发关于推进大数据技术发展的重要文件,紧接着又将大数据上升到了国家战略层面。所有这一系列重要举措,都证明了一件事情——当下,正是大数据的风口!
随着互联网的发展,大数据正在以惊人的速度被创造和收集着,尤其随着诸如Google和Alibaba等互联网公司的崛起,数据的价值越来越得到认可,甚至被公司定义为战略资源。因此越来越多的公司开始搭建自己的大数据平台,用来处理数据,从中挖掘商业价值。大数据运维正是在这样的背景下发展起来的,它与传统领域的运维有很多共性的地方,也有一些自身的特点。 第一个特点是规模大 大数据领域单个集群的规模一般是几百台物理机,多则上万台。为了满足容灾需求,一般会有多个集群,而且是跨地域部署的。集群规模大
日前,中国信息通信研究院正式发布《城市大数据平台白皮书》,阐述了城市大数据的概念和内涵,分析了建设城市大数据平台对于破解智慧城市建设难题的意义,并介绍了我国城市大数据平台的发展现状。
新三板上市 一、大数据平台“索信达数据”新三板挂牌上市 近日,大数据平台“索信达数据”宣布成功登陆新三板,挂牌上市。据了解,索信达数据成立于2004年3月25日,总部位于深圳,公司致力于通过大数据分析技术以及自有的大数据平台,帮助企业将海量的数据转化为商业价值,主要服务于金融、互联网、政府、制造、航空等多个行业。为其提供基于大数据的智慧营销管理、风险控制管理软件平台、决策支持平台、智能系统运营管理服务和数据可视化产品。 二、互联网广告解决方案服务商“联创云科”成功登陆新三板
<数据猿导读> 刚刚卖身成功又迎来噩耗,雅虎被曝2亿条账号在暗网被公开销售;体育大数据公司魔方元B轮融资尘埃落定,融资金额超亿元;被互联网巨头们看上的大数据公司“快联网”宣布获得千万美元融资……以下为
除了支撑集团的大数据建设,团队还提供To B服务,因此我也有机会接触到一些正在做数字化转型的传统企业。从2018年末开始,原先市场上各种关于大数据平台的招标突然不见了,取而代之的是数据中台项目,建设数据中台俨然成为传统企业数字化转型的首选,甚至不少大数据领域的专家都认为,数据中台是大数据下一站。
大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。 企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而
现在各种新名词层出不穷,顶层的有数字城市、智慧地球、智慧城市、城市大脑;企业层面的有数字化转型、互联网经济,数字经济、数字平台; 平台层面的有物联网,云计算,大数据,5G,人工智能,机器智能,深度学习,知识图谱;技术层面的有数据仓库、数据集市、大数据平台、数据湖、数据中台、业务中台、技术中台等等,总之是你方唱罢他登场,各种概念满天飞…
最近在看关于大数据、数据仓库 、数据架构的《数据架构:大数据、数据仓库以及Data Vault》一书,关于大数据有些思考,结合FineBI的Spider引擎,可看看Spider引擎对于大数据的阐释,以及在大数据平台架构中,可以处于什么样的位置。
在业务增涨过程中,每个企业不知不觉积累积累了一些数据。无论数据是多是少,企业都希望让“数据说话”,通过对数据的采集、存储、分析、计算最终提供对业务有价值信息。
“每天一个数据”分析师新一期内容奉上,请享用~ 采访 | Penny 整理 | Sophie 转载请注明来自CDA数据分析师 否则小编将举报到底! 人物档案 周宇红,大麦网大数据技术负责人,专注于娱乐行业大数据应用,负责大数据平台建设,机器学习,自然语言处理,社交媒体挖掘等。 DA:能请您先介绍一下自己的基本情况吗? 周宇红:我其实是从2013年底开始转战互联网的,之前主要在传统的IT行业。到大麦网以后,一开始就接触到大数据。到了2015年初,公司专门设立大数据部门,专门进行大数据的应用分析,我负责整合大
无论是采集数据,还是存储数据,都不是大数据平台的最终目标。失去数据处理环节,即使珍贵如金矿一般的数据也不过是一堆废铁而已。数据处理是大数据产业的核心路径,然后再加上最后一公里的数据可视化,整个链条就算
<数据猿导读> 本周,大数据领域共发生6起投融资事件,涉及领域包括软件、物流、精准营销,融资金额千万到十亿元不等。以下为您奉上本周投融资事件 一、Oracle(甲骨文)公司拟 5.32 亿美元收购数据分析公司 Opower 近日,Oracle(甲骨文)正式宣布将以以每股10.3美元的价格正式收购Opower公司,共计金额5.32亿美元。据悉,Opower是一家节能数据分析公司,成立于2007年。该公司主要通过对电力大数据的整合、分析,为用户提供实时服务,从而实现节能的目的。目前,Opo
当传统数据存储与处理架构,在数据达到海量以后,产生了存储与性能瓶颈。这个时候大数据出现了,它帮忙解决了数据在海量规模情况下的的存储与计算问题。这是一个技术发展的必要途径,旧的技术无法适应新出现的场景,新技术就要诞生去进行解决。
存储是大数据的基石,存储系统的元数据又是它的核心大脑,元数据的性能对整个大数据平台的性能和扩展能力非常关键。本文选取了大数据平台中 3 个典型的存储方案来压测元数据的性能,来个大比拼。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,和架构,你不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
气象情况、土壤信息、收割机工作进度……所有的数据都在你面前的屏幕上展开,而你只需要点点鼠标就可以完成整个农场的管理。模拟农场游戏让人们坐在家里也能体会一把种田的快乐。
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。借助开源的力量,任何有基础研发能力的组织完全可以搭建自己的大数据平台。但是对于没有了解过大数据平台、数据仓库、数据挖掘概念的同学可能还是无法顺利完成搭建,因为你去百度查的时候会发现太多的东西,不知道如何去选择。今天给大家分享下大数据平台是怎么玩的。
大数据技术的应用正在潜移默化改变着我们的日常生活习惯和工作方式,很多看起来有点“不可思议”的事情也渐渐被我们“习以为常”。大数据可能在国内的起步较晚,但我们可能却是对大数据应用最好的了代表了。前些时候有分享了一个大数据技术在智慧人社上面的应用案例,最近也一直看一些人力资源方面大数据解决方案的案例,比较集中的都是围绕智慧人社的。
摘要:国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求、数据能力成熟度评价模型、多媒体数据语义描述要求、科学数据引用、数据溯源描述模型、数据质量评价指标和通用数据导入接口规范。大数据企业如何发展,市场正在做出自己的选择。 8月末,北京某酒店的一场大数据企业展上,聚集了全国各地的企业。现场展示有随着《江南style》起舞的机器人,有早期科幻电影里走出来的“触摸式数据可视化屏幕”…… “你们的具体业务是做什么的”、“和大数据
摘要 国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求、数据能力成熟度评价模型、多媒体数据语义描述要求、科学数据引用、数据溯源描述模型、数据质量评价指标和通用数据导入接口规范。大数据企业如何发展,市场正在做出自己的选择。 8月末,北京某酒店的一场大数据企业展上,聚集了全国各地的企业。现场展示有随着《江南style》起舞的机器人,有早期科幻电影里走出来的“触摸式数据可视化屏幕”…… “你们的具体业务是做什么的”、“和大数
大数据时代这个词被提出已有10年了吧,越来越多的企业已经完成了大数据平台的搭建。随着移动互联网和物联网的爆发,大数据价值在越来越多的场景中被挖掘,随着大家都在使用欧冠大数据,大数据平台的搭建门槛也越来越低。
TDengine是一个开源的专为物联网、车联网、工业互联网、IT运维等设计和优化的大数据平台。除核心的快10倍以上的时序数据库功能外,还提供缓存、数据订阅、流式计算等功能,最大程度减少研发和运维的工作量。
大数据有很多的产品,琳琅满目。从架构图上就能看出产品很多。这些产品它们各自的功能是什么,它们又是怎么样相互配合来完成一整套的数据存储,包括分析计算任务。这里要给大家进行一个讲解与分析。
大数据技术的应用与发展正在让我们的生活经历一场深刻的“变革”,而且这种变革几乎让所有人都感觉非常舒服,自然而然的就完成了这样的一个变化。最根本的原因其实是大数据技术的应用真正帮助我们解决了问题。
本次分享将结合多个大数据项目与产品研发的经验,探讨如何基于不同的需求场景搭建通用的大数据平台。内容涵盖数据采集、存储与分析处理等多方面的主流技术、架构决策与技术选型的经验教训。 大数据平台内容 数据源
先说观点:因为还没找到更好的。 接下来说原因,首先来看看大数据平台都在干什么。 原因 结构化数据计算仍是重中之重 大数据平台主要是为了应对海量数据存储和分析的需求,海量数据存储的确不假,除了生产经营产生的结构化数据,还有大量音视频等非结构化数据,这部分数据很大,占用的空间也很多,有时大数据平台 80% 以上都存储着非结构化数据。不过,数据光存储还不行,只有利用起来才能产生价值,这就要进行分析了。 大数据分析要分结构化和非结构化数据两部分讨论。 结构化数据主要是企业生产经营过程中产生的业务数据,可以说是企业的
任岩 大数据具有数据量大、形式多样、速度快、价值高等特征,大数据产业是围绕数据的生成、采集、存储、加工、分析、服务为主的战略新兴产业。我国数据存储规模增长迅速,据IDC统计数据显示,2013年到2019年,全球大数据储量增速每年都超过40%,2019年全球大数据储量达到41ZB(相当于440亿个1TB容量的移动硬盘)。其中中国大数据储量占全球储量约为23%,美国大数据储量占比约为21%,欧洲、中东、非洲数据储量占比约为30%,日本和亚太数据储量占比约为18%,全球其他地区储量约为8%,在数据储量上,我国已走在世界前列。数据储量是大数据产业中关键的一环,有了海量数据存储,才有可能在加工、流通、服务等环节研发创新和展开更多应用。
现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己?
从事大数据行业的朋友应该都知道大数据已经上升到了国家战略高度,2015年8月31日,国务院印发了《促进大数据发展行动纲要》。旨在通过建立“用数据说话、用数据决策、用数据管理、用数据创新”的管理机制,实现基于数据的科学决策。
最近有很多人问我,大数据专业有什么好的毕设项目,我就简单的回复了一下。也有直接问我要源码的....
在当今的大数据时代,不仅IT行业的人们需要了解与大数据相关的知识,而且传统行业的从业者和普通大学生也应了解某些大数据知识。新的基础架构计划未来,大数据技术将开始得到全面应用,大数据还将重塑整个产业结构。
估计大家听大数据听得太多,耳朵都快起茧了吧?谁要IT界不如娱乐界那么精彩热闹,几年才憋出一个流行词,自然大家只要提到数据,都说“大”;提到服务,都说“云”。 言归正传,你弄明白大数据分析要分析什么数据了吗?(弄明白的高手可以直接飘过;没弄明白的,看下面的内容能不能涨姿势) 我们先来简单聊几句有关大数据分析工具的背景。无需置疑,现在大数据平台和大数据分析工具日益普及,作用是可以帮助企业收集和分析数据,好处是可以寻找有价值的商业信息和洞察,以改进产品与服务。大数据分析工具用于分析数据,可以开发预测模型(pre
会上,中国通信标准化协会大数据技术标准推进委员会发布了《数据库发展研究报告(2024年)》,深入分析和展望了我国数据库产业及技术发展与行业应用情况。
公众号开了快一年了,名字叫学一学大数据。但是一直没有分享关于大数据的文章,如是就抽出时间来给大家分享下大数据整理的技术路线及生态全景。 先扯一下大数据的4V特征: 数据量大,TB->PB 数据类型繁多,结构化、非结构化文本、日志、视频、图片、地理位置等; 商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来; 处理时效性高,海量数据的处理需求不再局限在离线计算当中。 现如今,正式为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的: 文件存储:Had
背景:9月6日消息,根据gov.cn的消息,近日,国务院公开发布《国务院关于印发促进大数据发展行动纲要的通知》。国务院印发大数据发展行动纲要:2018年底前建成政府大数据平台 大数据是以容量大、类型多
腾讯启动“疼爱医疗”战略 用大数据构建互联网+医疗连接器 近日,腾讯公司副总裁丁珂在“互联网+慢病管理”发布会上宣布正式启动“腾爱医疗”战略,将利用腾讯的社交基因和大数据能力,搭建“互联网+医疗”
领取专属 10元无门槛券
手把手带您无忧上云