“马克-to-win”是”马克java社区”创始人。在java领域有七科教材,简称:1)java核心,2)java3)jsp,4)架构 5)前端 6)前沿32门课 7)数据库。近千集视频。 硕士毕业于全球排名前25的国外知名大学计算机科学系且具有五年国外软件工程师经验。国内八年从教后,逐步走上开发领导岗位到技术副总,负责的大项目工程师一度多达300人。四年技术管理经验,门生部下,广泛分布于it业内,走上领导岗位上的更是比比皆是。
架构设计 整理架构设计 从支付系统、日志系统、用户系统从获取用户的离线数据,保存到Hadoop集群,并对Hadoop集群中的数据进行处理,提炼出基础数据。然后经基础数据存放在Redis中。 从消息中心实时消费支付系统发送出来的支付订单信息,编写storm程序对实时订单信息处理。 storm程序的主要逻辑如下: 从数据库中读取业务配置的规则数据,规则数据从规则配置系统上可视化配置对订单不同维度的数据进行校验,将触发规则的信息存放到数据库 管理平台从数据库获取触发规则的信息进行处理 功能模块设计 数据收集模
本专栏以大数据企业级项目为主, 学完再也不惧面试没有项目经历可讲, 丰富你的大数据项目经历. 这是大数据项目的第四篇:大数据股市指数项目 思维导图奉上:
想要学好一门技术,我们往往需要一份好的学习资料,不论在什么阶段,我们都应该不断地学习!所以,今天的这篇文章,就是要给大家提供这样一份精品的学习资料,它覆盖了我们的每个学习阶段,从入门到进阶,从基础到实战,从求职到升职。
Java 视频教程 spring源码深度解析+注解开发全套视频教程 ssm项目实战视频教程前后台完整团购支付项目(mkw): 链接:https://pan.baidu.com/s/1OFXRIh6KNpK0mkZru4mSCw 密码:cxyb 链接:https://pan.baidu.com/s/1TUUq903WaLWtaxFSITNwrw 密码:eoew ssh综合项目实战完整金融借贷项目视频教程(czbk): ssm企业项目实战校园商铺java视频教程: 链接:htt
这几天把跨年搞的和人生分水岭似的🤪 2023年的你有什么不一样了吗? 是不是还和去年一样的造型? 新姿(知)势(识),学起来 腾讯云开发者社区带着干货来了 腾讯云×尚硅谷大数据研究院强强联手 重磅推出新年第一弹 腾讯云EMR数仓教程发布 腾讯云开发者社区“公开课”直达: https://mc.tencent.com/JLIcWlY0 扫码加入“腾讯云大数据EMR交流群” 免费获取全套教程 群内提供腾讯云官方大数据团队导师全程指导及技术交流 本教程由腾讯云官方与尚硅谷大数据研究院联合推出,分为实时
本文是假如大数据组件中的动物都变成神奇宝贝,那会变成什么样?的姊妹篇 大数据组件的默认端口号思维导图,后期将会结合记忆法出一篇记忆端口号的文章。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 随着信息通讯技术的不断发展,各行各业都产生了海量的数据,与此同时,一门新的学科应运而生—— 数据挖掘。数据挖掘是从大量数据(包括文本数据)中挖掘出隐含的、先前未知的、对决策有潜在价值的信 息、知识和关联关系,并基于这些信息和相应规则建立可用于决策支持与优化分析的模型,提供可支持预测 性决策的方法和工具。此外,数据挖掘还可帮助企业和科研团体发现业务与学科中的新趋势,揭示已知的 事实,预测未知的结果,因此“数据挖掘”已成为其
根据场主了解,Linux高级运维工程师的起薪在8-10K,1-3年工作经验能拿12-16K,3-5年工作经验能拿年薪30-50W。
新路线图在Spark一章不再以Java,而把Python语言作为第一语言,更适应未来的发展趋势,路线图主要分为六大模块,根据以下内容对照自己掌握了多少大数据的知识,查缺补漏!文末送全套视频+源码资料。
车牌的检测和识别的应用非常广泛,比如交通违章车牌追踪,小区或地下车库门禁。在对车牌识别和检测的过程中,因为车牌往往是规整的矩形,长宽比相对固定,色调纹理相对固定,常用的方法有:基于形状、基于色调、基于纹理、基于文字特征等方法,近年来随着深度学习的发展也会使用目标检测的一些深度学习方法。该项目主要的流程如下图所示:
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 。 。 。 。 。 。 。 全部 代码 ,视频,数据集 获取方式: 关注微信公众号 datayx 然后回复 唐宇迪 即可获取。 机器学习算法AI大数据技术 搜索公众号添加: datanlp 长按图片,识别二维码 ---- 阅读过本文的人还看了以下文章: TensorFlow 2.0深度学习案例实战 基于40万表格数据集TableBank,用MaskRCNN做表格检测 《基于深度学习的自然
Kafka的优势比较多如多生产者无缝地支持多个生产者、多消费者、基于磁盘的数据存储、具有伸缩性、高性能轻松处理巨大的消息流。多用于开发消息系统,网站活动追踪、日志聚合、流处理等方面。今天我们一起来学习Kafka的相关知识吧!
今天又是周末,还是想给大家送一些福利,因为最近一直有小伙伴问我要springboot等微服务的学习资源,所以,本次分享一整套的微服务学习资源,带项目实战。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 所有论文 包括已经录制完成和之后将要介绍的论文。选取的原则是10年内深度学习里有影响力文章(必读文章),或者近期比较有意思的文章。当然这十年里重要的工作太多了,不可能一一过一遍。在选取的时候我会偏向一些之前 直播课 中没讲到过的。 总论文数 67,录制完成数 32 全部 代码 ,预训练模型 获取方式: 关注微信公众号 datayx 然后回复 论文 即可获取。 机器学习算法AI大数据技术 搜索公众号添加: d
程序员作为曾经备受羡慕的高薪群体,如今也面临着“保饭碗”的巨大压力,许多想要入坑的新人也处于观望态势。
数字经济正在进入智能经济的新阶段,数据资产已成为关键生产要素,更大化地发挥数据对经济社会的促进作用成为各行业创新方向。产业数字化转型与智能化升级需要怎样的数据基础设施?如何挖掘并保障数据应用价值的可持续发展?如何有效落地数据资产建设和应用?如何提高数据安全保护水平,保障数字经济的健康安全? 百度智能云“云智技术论坛”第四期智能大数据专场即将于9月28日在上海举办,围绕“云智一体,让大数据发挥大价值”为主题,百度多位资深技术专家将带来大数据技术的最新洞察,并与行业伙伴共同探讨如何打造安全可靠的数据基础设施与
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 在自然语言处理领域中,预训练语言模型(Pretrained Language Models)已成为非常重要的基础技术,本仓库主要收集目前网上公开的一些高质量中文预训练模型。 NLU系列 BERT RoBERTa ALBERT NEZHA XLNET MacBERT WoBERT ELECTRA ZEN ERNIE RoFormer StructBERT Lattice-BERT Mengzi-BER
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 安装依赖 pip install requests 使用方法 浏览器打开:https://order.jd.com/center/list.action 没登录就登录 F12 控制台 console 栏输入 console.log(_JdJrTdRiskFpInfo, _JdEid) 参数依次对应: _JdJrTdRiskFpInfo => self._JdJrTdRiskFpInfo _JdEid => self.
关注技术博客的读者肯定有这样感受,Spring Boot 相关的文章铺天盖地。 仿佛一切都在证明,Spring Boot 已成为Java 程序员必备技能。 未来 Spring Boot 的发展还会更好,说 Spring Boot 是当今最重要的 Java 框架也不为过。今天我们就来推荐一些李刚老师的高能课程,一站式学到并掌握Spring Boot所整合的各种技术!内容涉及: MongoDB RabbitMQ Neo4j Kafka 全文检索 即便你是入门水平,完整学习后,也将能够在企业级Spring Boo
本项目是利用YOLOv4进行口罩佩戴检测,使用PyTorch实现。虽然现在国内疫情基本得到有效遏制,但防控仍不可过于松懈,在一些公共场合佩戴口罩还是必不可少的。基于此,自己做了该项目,后续打算继续改进,争取将其运行到边缘设备上。希望本项目能给疫情常态化防控出一份力,也希望真正的新年早日到来。
nature杂志的TECHNOLOGY FEATURE 栏目在13 JANUARY 2020发表了一个有趣的小短文:Eleven tips for working with large data sets,副标题是:Big data are difficult to handle. These tips and tricks can smooth the way.
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx nerpy实现了BertSoftmax、BertCrf、BertSpan等多种命名实体识别模型,并在标准数据集上比较了各模型的效果。 https://github.com/shibing624/nerpy Evaluation 说明: 结果值均使用F1 结果均只用该数据集的train训练,在test上评估得到的表现,没用外部数据 shibing624/bert4ner-base-chinese模型达到同级别参数量SOT
记忆宫殿如何运用到生活中,比如用来记忆编程语言。那么就先要找到地点,即宫殿 让每一个地点存放一部分知识内容。比如自己熟悉的卧室,或者院子,能够清楚的记忆 起来这条路线上的布置和东西,然后找出一些有特征的容器用来与知识绑定。例如将默认端口号 分为三类:5位数字一类,4位数字一类,4位数字又划分成大于开头第一位数字大于5的和不大于5的
短视频作为更加符合移动互联网时代用户触媒习惯的视频内容形式,在内容上和功能上本身就具有很大的想象空间。通过“短视频+”的方式现在有不少平台上搭建和嵌入短视频源码,是一个不错的入局途径。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 实现思路 数据处理 原始数据来源于 https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/wiki_crop.tar 原始数据集包含的图片数量很多,我从中筛选了大约10000张图片(筛选条件为:由OpenCV识别出的face数目为1、性别已知、男女各约5000张) 图片尺寸统一为 100x100,文件名格式统一为 编号-年龄-性别.png,其中性别1
拼多多,新电商开创者,3亿人都在拼的购物APP。社交电商?消费降级?到底是什么成就了拼多多?
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 在大数据和人工智能技术加持下,不同行业各种新兴的风险控制手段也正在高速发展。但这些风险信息散落在互联网的海量资讯中,若能从中及时识别出风险事件并挖掘出潜在的风险特征,能够大幅提升识别和揭示风险的能力。而风险事件以文本的形式存在,需要采用自然语言理解模型实现风险事件的高精度智能识别,其本质是属于一个文本分类任务。 NLP(自然语言处理)作为人工智能领域皇冠上的“明珠”,其技术的科研创新一直精进不休。而文本分类在自然
Global X推出了一款针对大数据和人工智能(AI)领域的ETF。在全球X未来分析技术ETF(AIQ)对参与这些技术的开发和使用的公司进行投资。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 项目描述 本项目是一个带有超级详细中文注释的基于GPT2模型的新闻标题生成项目。 本项目参考了GPT2-Chinese、GPT2-chitchat、CDial-GPT、GPT2等多个GPT2开源项目,并根据自己的理解,将代码进行重构,添加详细注释,希望可以帮助到有需要的人。 本项目使用HuggingFace的transformers实现GPT2模型代码编写、训练及测试。 本项目通过Flask框架搭建了一个Web服务,将新
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 基于Flask RESTful api的图像特征检索方案,api传入url/base64即可在毫秒内返回数据库匹配结果,主要用于图像去重,后续拓展使用范围。 1. 项目说明: 本项目基于开源框架PyRetri进行二次开发,同时结合facebook开源项目Facebook AI Similarity Search,设计出基于Flask的RESTful api接口,目的是为了解决以下几个场景问题: 1)本地已经存储大规模
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 在构建模型时,调参是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型。但是应该如何确定参数的值呢?所以这里记录一下选择参数的方法,以便后期复习以及分享。 (除了贝叶斯优化等方法)其它简单的验证有两种方法:1、通过经常使用某个模型的经验和高超的数学知识。2、通过交叉验证的方法,逐个来验证。 很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 最近遇到一个问题,如何读取仪表中的指针指向的刻度 解决方法有多种,比如,方案一:模板匹配+边缘检测+霍夫直线检测,方案二:神将网络(CNN)目标定位等, 其中CNN就有点麻烦了,需要一定数量的训练样本,太麻烦,而方案一太普通,最后我采用了方案三, 方案三:模板匹配+k-means+直线拟合 具体做法如下: 首先说一下模板匹配,它是OpenCV自带的一个算法,可以根据一个模板图到目标图上去寻找对应位置,如果模板找
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 中文微博情感分类语料库 "情感分析"是我本科的毕业设计, 也是我入门并爱上NLP的项目hhh, 当时网上相关语料库的质量都太低了, 索性就自己写了个爬虫, 一边标注一边爬, 现在就把它发出来供大家交流。因为是自己的项目,所以标注是相当认真的,还请了朋友帮忙校验,过滤掉了广告/太短/太长/表意不明等语料,语料质量是绝对可以保证的 带情感标注的微博语料数量: 10000(train.txt)+500(test.txt)
PPV课大数据 这是一个人人都言“大数据”的时代,然“大数据”存在于何处?影响于何处?难免,普通大众被席卷而来的“大数据”之潮迷乱了眼睛,搅乱了思绪。正是在这样的时刻,笔者认为尤为重要的是保有敬畏之心与清醒的思维,认识到“大数据”的局限性。 渗透时刻,无处不在的大数据 大数据可能是时下最吸引眼球的话题之一。从通过鲜花与安全套销量比分析不同城市的浪漫指数到发现深处内陆的新疆人民反而比基尼销量第一,从为节能减排做贡献到德国国家队利用大数据技术搜集球员信息征战世界杯到根据敌方机场起降信号,一分钟内分析出起降批次,
向AI转型的程序员都关注了这个号👇👇👇 普通211硕士,方向是内燃机,现在研二,未来想换到自动驾驶,会matlab的编程计算,simulink有一定了解,目前想要深入学习,请问该如何提高自己,才能进去车企的自动驾驶团队,我知道可能我专业不太相符,但是较为喜欢自动驾驶和控制逻辑,请不吝赐教. 自动驾驶学习资料汇总 https://zhuanlan.zhihu.com/p/517710302 1. 课程资料 德国蒂宾根大学的自动驾驶课程 (Self-Driving Cars, lectureed by Pr
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 之前只用过单线程处理,加载模型进行测试,运行时间上也可以接受。但是现在需要处理比较大量的数据,如果进行线性处理,可能测试一次就花10个小时,而且还不知道结果怎么样,所以多线程就必须使用上了。有关线程部分主要参考:https://junyiseo.com/python/211.html 1 多线程 多线程类似于同时执行多个不同程序,线程在执行过程中与进程还是有区别的。每个独立的进程有一个程序运行的入口、顺序执行序列和程
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 精度与速度远超 YOLOv5 和 YOLOX 的新框架 YOLOv6关键技术介绍 YOLOv6 主要在 Backbone、Neck、Head 以及训练策略等方面进行了诸多的改进: 我们统一设计了更高效的 Backbone 和 Neck :受到硬件感知神经网络设计思想的启发,基于 RepVGG style[4] 设计了可重参数化、更高效的骨干网络 EfficientRep Backbone 和 Rep-PAN Neck。
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 此项目可监控近千家中国企业的官方网站的新闻动态,如有更新,系统能在最短2分钟之内通过邮件发送更新的标题和链接。更新的信息流也可通过浏览器查看。监控的公司和站点可以添加删除。 原理:定期抓取网站html, 使用difflib比对新旧页面源码,发现增加的部分,提取url和text,过滤筛选,保存MySQL数据库。定期把更新的url和text,通过邮件发送给订阅者。 全部代码 获取方式: 关注微信公众号 datayx 然
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 上采样与上池化 图示理解,使用三张图进行说明: 图(a)表示UnPooling的过程,特点是在Maxpooling的时候保留最大值的位置信息,之后在unPooling阶段使用该信息扩充Feature Map,除最大值位置以外,其余补0。 Unpooling是在CNN中常用的来表示max pooling的逆操作。 鉴于max pooling不可逆,因此使用近似的方式来反转得到max pooling操作之前的原始情
投稿和反馈请发邮件至holly0801@163.com。转载大数据公众号文章,请向原文作者申请授权,否则产生的任何版权纠纷与大数据无关。
向AI转型的程序员都关注了这个号👇👇👇 火爆全网的小游戏羊了个羊到底藏了什么套路?几乎所有人上班下班都在玩,可通关率据说还不到1%。 其实这个游戏和你的策略或技术没啥关系,完全是算法和运气在折磨你。十年前我们玩空当接龙的时候,所有牌都是明牌,理论上可以算出最优解;但羊了个羊不一样,策略再好也不能稳赢,因为你根本不知道一张牌底下藏着什么牌,这和斗地主还不一样,斗地主的牌堆是固定的,但游戏里的牌堆可以被算法改变。 知乎上有人算出了通关概率,游戏一共有14种图案,即使按照逐渐消层的最优解,底下的牌也有200多万
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 监督部分 第二章 感知机: 博客:统计学习方法|感知机原理剖析及实现 实现:perceptron/perceptron_dichotomy.py 第三章 K近邻: 博客:统计学习方法|K近邻原理剖析及实现 实现:KNN/KNN.py 第四章 朴素贝叶斯: 博客:统计学习方法|朴素贝叶斯原理剖析及实现 实现:NaiveBayes/NaiveBayes.py 第五章 决策树: 博客:统计学习方法|决策树原理剖析及实现 实现:
“过去,物流企业从代码到运维到安全到网络的众多领域,要耗费大量人力、财力。云计算则解决了这个问题:减少了物流企业成本,降低建设门槛,为企业发展减轻了负担,同时将物流产业的服务化,产生更多可以利用的数据。”——G7吴海波 似乎是冥冥中注定,从一开始毕业从事软件开发工作,到后来WMS、TMS等传统物流管理软件的研发,再到物联网技术,吴海波都与物流有着不解的缘分,而他也认为自己是幸运的,可以做自己喜欢的事,并乐此不疲。 G7的建立,可以说是互联网时代,吴海波一众人为了满足物流企业对物联网技术的迫切需求,在云计算、
大数据相关的岗位近年来增长不少,有不少朋友都在转这个方向,下面是最近整理的大数据技术知识库,供大家参考:
当今时代正在经历由于新技术而引发的颠覆性变革。5G、物联网、云计算与大数据、人工智能和区块链...正在改变着世界。 对于架构师来说,新技术的降临是富有挑战的。从前十年的虚拟化,到今天的混合云,容器技术、微服务架构,还有如火如荼的数据中台、技术中台、业务中台等超前的技术理念所带来的架构变化,都在为架构工作带来了空前的现实挑战和压力。 在这股浪潮中,分布式、大数据架构、架构演进和大中台技术成为了架构圈火热的几大块: • 当下,服务器端各种新的技术,无论是微服务、中台、还是云原生,本质上都是如何更好的构建一个
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx doccano是一个开源文本标注工具。它提供了文本分类,序列标注和序列到序列的标注功能。因此,您可以为情绪分析,命名实体识别,文本摘要等创建标记数据。只需创建项目,上传数据并开始标注。 总结下来就3步,上传数据,标注,下载带有标签的数据。 官网:http://doccano.herokuapp.com/ 命名实体识别 第一个演示是序列标记任务之一,命名实体识别。您只需选择文本跨度并对其进行标注即可。由于doc
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx DBnet文本检测网络加入多分类,可以实现模型很小又能够区分类别的功能,然后可以根据检测框的标签快速提取目标字段,在端侧部署的话就能达到非常高的精度和效率。 1.标注数据 标注方法和标注目标检测的数据一样,一个框加一个标签 pip install labelImg ==1.8.6 安装完毕后,键入命令: labelImg 或者下载工具 labelImg.exe链接:https://pan.baidu.com/s/14
当企业转变为数据驱动的机器时,其潜力是巨大的:企业所拥有的数据可能成为获得竞争优势的关键。因此,企业的数据和基础设施的安全也变得比以往任何时候都重要。 在许多情况下,企业或组织都可能得到Forrester所说的“有毒的数据”。例如,一家无线公司正在收集谁登录哪一个天线塔、他们在线逗留多长时间、他们使用多少数据、他们是在移动还是处于静止状态等数据,这些数据可用来了解用户行为的状况。 这家无线公司也许有许多用户生成的数据:信用卡号码、社会保险号码、购买习惯数据和用户使用任何信息的方式
领取专属 10元无门槛券
手把手带您无忧上云