首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

大数据分析流程

一、为什么要做一份数据报告 你是一个在校学生,上着自己喜欢或不喜欢的课,闲来无事,你打开知乎,看到了数据分析话题,你下定决心要成为一个数据分析师,你搞来一堆学习资料和在线课程,看完之后自信满满,准备去投简历...然后发现不清楚各种工具和模型的适用范围,也不知道数据报告需要包括哪些内容,面试的感觉就是一问三不知…… 你是一个工作了一段时间的白领,你觉得现在这份工作不适合你,你下班以后去逛知乎,在上面看到很多人在说大数据代表未来...,数据分析师是21世纪最性感的十大职业之一……你激动了,你也要成为数据分析师,你利用空余时间补上了统计知识,学了分析工具,然后发现自己目前的工作跟数据分析没啥关系,觉得没有相关经验没公司要你…… 这些问题的根源是什么...一句话可以概括:你没有办法在最短的时间内向招聘者展示,你能够胜任数据分析这项工作。...二、制作数据报告的流程 ?

3.3K41

大数据分析大数据分析方法 及 相关工具

基于此,大数据分析方法理论有哪些呢? ?...大数据分析的五个基本方面 PredictiveAnalyticCapabilities (预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断...通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。...具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。...整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。 采集 大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。

3.7K80
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析】TalkingData:游戏数据分析流程

    文/ 于洋 TalkingData高级咨询总监 1.3 游戏数据分析流程 游戏数据分析整体的流程将分为几个阶段,这几个阶段则是反映了不同企业数据分析的水平,从另一个角度,也是在解析作为一名数据分析人员究竟该如何参与到游戏数据分析业务中...图1-2游戏数据分析流程 1.3.1方法论 方法论是数据分析的灵魂,是解决问题的普遍原则,贯穿分析始终的思想指导。这个阶段决定了我们如何埋点数据,如何设计分析指标,如何采集,如何组织数据。...1.3.2数据加工 对数据进行处理使其最终变成信息,这个阶段统称为数据加工,具体要经历如图1-3所示的流程。 图1-3游戏数据加工流程 在数据加工阶段,我们重点要去解决的问题有两点。...1.3.5建议方案 前面几个过程是从数据平台、标准分析系统、产品运营和精细化几个关键词在描绘游戏数据分析流程,而数据分析的最终是要形成方案或者决策指导,因为分析结果体现不了价值,最终还是要和业务结合,...在以往的游戏数据分析领域,我们会发现,经过数据分析后,方案一旦形成,我们很难将这个方案执行下去,并且无法评估最终的效果,因为在整个数据分析环节中,参与的部门的人员众多,数据分析结果与方案执行往往很难做到一致

    3K81

    大数据分析系统

    概念、分类 数据分析系统的主要功能是从众多外部系统中,采集相关的业务数据,集中存储到系统的数据库中。...根据数据的流转流程,一般会有以下几个模块:数据收集(采集)、数据存储、数据计算、数据分析、数据展示等等。当然也会有在这基础上进行相应变化的系统模型。...按照数据分析的时效性,我们一般会把大数据分析系统分为实时、离线两种类型。实时数据分析系统在时效上有强烈的保证,数据是实时流动的,相应的一些分析情况也是实时的。...而离线数据分析系统更多的是对已有的数据进行分析,时效性上的要求会相对低一点。时效性的标准都是以人可以接受来划分的。 2. 网站流量日志数据分析系统 2.1....2、优化页面及业务流程设计,提高流量转化率。 3、帮助企业更好地根据客户的兴趣来安排内容。 4、帮助企业对客户群进行细分,针对不同客户制定个性化的促销策略等。

    3.4K20

    TCGA mRNA数据分析流程

    一、Introduction 介绍 TCGA mRNA定量分析流程测量HT-Seq 原始reads统计中的基因表达水平,Fragments per Kilobase of transcript...RNA-Seq 比对流程 以 Alignment Workflow 开始比对的流程, 该流程使用STAR 中重复比对方法执行....此工作流程输出基因组BAM文件,其中包含比对和未比对的reads。质量评估在比对前用 FASTQC 进行,并在比对后用 Picard Tools 进行。....Aligned Reads BAM 2.RNA-Seq Alignment 命令行参数 请注意,由于正在进行流程的开发和改进,从GDC门户下载的文件中的版本号可能会有所不同。...3.mRNA 表达量处理流程 比对后,通过 RNA Expression Workflow 处理BAM文件以确定RNA表达水平。比对到每个基因的读数使用HT-Seq-Count计数。

    1.5K20

    何为大数据分析

    基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 1. 可视化分析。...大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了...大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 4. 语义引擎。...大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。...整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

    2K20

    大数据分析技术方案

    一.目标 现在已经进入大数据时代, 数据是无缝连接网络世界与物理世界的DNA。发现数据DNA、重组数据DNA是人类不断认识、探索、实践大数据的持续过程。...大数据分析可以有效地促进营销,个性化医疗治病,帮助学生提高成绩,利于老师提高教学水平,还可以用于教学,许多产品可以用到大数据技术,如量化分析金融产品等。...必须加强大数据技术的研究并实际应用.这里对目前最流行和最实用的用户画像技术进行讲解,并分析大数据分析的常用算法。 二.用户画像 1....4.应用流程:针对不同角色人员的需求(如市场、销售、研发等),设计各角色人员在用户画像工具中的使用功能和应用/操作流程。...可视化分析系统提供系统监控,权限多级管理,多维数据分析,等等功能,还支持自服务式报表设计和数据分析

    1.7K20

    大数据分析那点事

    重复数据处理: 5.2 缺失数据处理 5.3 数据抽取 ---- 一、什么是数据分析据分析是指数据分析师根据分析目的,用适当的分析方法及工具,对数据进行处理与分析,提取有价值的信息,形成有效结论的过程...数据分析的一般流程: 二、基础分析指标和术语 2.1 平均数 我们在日常生活中提到的平均数,一般是指算术平均数,就是一组数据的算术平均值,即全部数据累加后除以数据个数。...三、数据分析方法论 数据分析方法论与数据分析法的区别:数据分析方法论主要是用来指导数据分析师进行一次完整的数据分析,它更多的是指数据分析思路,比如从哪些方面展开的数据分析,即从宏观角度来指导如何进行数据分析...:什么是数据分析方法论?...四、常用的数据分析工具 工欲善其事,必先利其器。熟练掌握一个数据分析工具可以事半功倍的解决问题。

    1.3K10

    大数据Python:3大数据分析工具

    在这篇文章中,我们将讨论三个令人敬畏的大数据Python工具,以使用生产数据提高您的大数据编程技能。...正如它的网站所述,Pandas是一个开源的Python数据分析库。 让我们启动IPython并对我们的示例数据进行一些操作。...现在有了Pandas,您也可以在Python中进行数据分析。数据科学家通常将Python Pandas与IPython一起使用,以交互方式分析大量数据集,并从该数据中获取有意义的商业智能。...这是来自Apache Spark项目的大数据分析库。 PySpark为我们提供了许多用于在Python中分析大数据的功能。它带有自己的shell,您可以从命令行运行它。...如果您不熟悉大数据并希望了解更多信息,请务必在AdminTome在线培训中注册我的免费大数据入门课程。

    4.2K20

    大数据开发流程及规范

    一、背景 在大数据时代,规范地进行数据资产管理已成为推动互联网、大数据、人工智能和实体经济深度融合的必要条件。...数据研发规范旨在为广大数据研发者、管理者提供规范化的研发流程指导方法,目的是简化、规范日常工作流程,提高工作效率,减少无效与冗余工作,赋能企业、政府更强大的数据掌控力来应对海量增长的业务数据,从而释放更多人力与财力专注于业务创新...二、数据开发流程 鉴于对日常数据仓库研发工作的总结与归纳,将数据仓库研发流程抽象为如下几点: 需求阶段:数据产品经理应如何应对不断变化的业务需求。...文档:开发完成后,文档记录一下流程以及提供数据表字段说明,方便重构。 数据需求流程 各个角色职责 这个流程针对的是项目是开发,在项目立项的开始,就需要明确各个角色的职责,而且需要和多个角色进行配合。...数据分析师、产品经理、数据产品经理,参与会议。判断是否需要客户端or服务端埋点,判断是否需要埋点同学参与。如果是数据API,如服务接口、线上人群包等还需要server同学参与会议。

    96510

    图解大数据 | 大数据分析挖掘-Spark初步

    Apache Spark是一种用于大数据工作负载的分布式开源处理系统。它使用内存中缓存和优化的查询执行方式,可针对任何规模的数据进行快速分析查询。...Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量的廉价硬件之上,形成集群。...Apache Spark 已经成为最受欢迎的大数据分布式处理框架之一。...由加州大学伯克利分校的AMPLabs开发,作为Berkeley Data Analytics Stack(BDAS)的一部分,当下由大数据公司Databricks保驾护航,更是Apache旗下的顶级项目...3)Spark作业和调度流程 Spark的作业调度主要是指基于RDD的一系列操作构成一个作业,然后在Executor中执行。

    2K41

    大数据分析:基于Hadoop的数据分析平台

    大数据时代的带来,一个明显的变化就是全样本数据分析,面对TB/PB级及以上的数据规模,Hadoop始终占据优势。今天的大数据学习分享,我们来聊聊基于Hadoop的数据分析平台。...Hadoop在大数据技术生态圈的地位,可以说是难以动摇,经过这么多年的发展,基础核心架构的地位,依然稳固。...Hadoop系统的可伸缩性、健壮性、计算性能以及低成本,使得它事实上已成为当前互联网企业主流的大数据分析平台。 基于Hadoop平台,可以根据实际的业务需求,来进行数据系统的规划和设计。...针对不同的具体需求,采用不同的数据分析架构来解决实际问题。 按照数据分析的实时性,分为实时数据分析和离线数据分析两种。...总之,在大数据的发展当中,Hadoop始终占据着重要的位置,掌握Hadoop技术,是进阶大数据的基础门槛。

    1.9K20
    领券