Three Sampling Distribution(三大抽样分布): Chi-squareDistribution(卡方分布), t-distribution(t-distribution)...Data Pre-processing(数据预处理): Missing Value Imputation(缺失值填充), Discretization(离散化),Mapping(映射), Normalization...(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别), EL(Ensemble Learning集成学习...Deep Learning(深度学习): Auto-encoder(自动编码器), SAE(Stacked Auto-encoders堆叠自动编码器, Sparse Auto-encoders...Text Mining(文本挖掘): VSM(Vector Space Model向量空间模型), Word2Vec(词向量学习模型), TF(Term Frequency词频), TF-IDF
:项目实战、技术综合运用 大数据开发学习可以按照以下内容进行学习: 第一阶段:JavaSE+MySql+Linux 学习内容:Java 语言入门 → OOP 编程 → Java 常用Api、集合 → IO.../NIO → Java 实用技术 → Mysql 数据库 → 阶段项目实战 → Linux 基础 → shell 编程 学习目标:学习java语言,掌握java程序编写、面向对象程序开发,掌握MySql...Pig 学习目标:掌握大数据学习基石Hadoop、数据串行化系统与技术、数据的统计分析、分布式集群、流行的队列、数据迁移、大数据平台分析等 第三阶段:Storm 与Spark 及其生态圈 学习内容:Storm...→ Scala → Spark → Spark SQL → Spark Streaming →Spark 机器学习 学习目标:让大家拥有完整项目开发思路和架构设计,掌握从数据采集到实时计算到数据存储再到前台展示...想学习好大数据可以关注公众号程序员大牛 有视频资源分享一起学习。
为了帮助构建对象识别模型,场景识别模型等,编制了最佳图像分类数据集的列表。这些数据集的范围和大小各不相同,可以适应各种用例。此外数据集已分为以下几类:医学成像,农业和场景识别等。...医学图像分类数据集 1. 递归蜂窝图像分类 –此数据来自递归2019挑战。竞赛的目标是利用生物显微镜数据开发可识别复制品的模型。关于比赛的全部信息可以在这里找到。...CoastSat图像分类数据集 –用于开放源代码海岸线测绘工具,该数据集包含从卫星获取的航空图像。数据集还包括与标签有关的元数据。...TensorFlow Sun397图像分类数据集 –来自Tensorflow的另一个数据集,该数据集包含场景理解(SUN)基准中使用的108,000多幅图像。此外图像已分为397类。...图像分类:人和食物 –该数据集采用CSV格式,由吃食物的人的图像组成。人类注释者按性别和年龄对图像进行分类。CSV文件包含587行数据,URL链接到每个图像。
数据挖掘 国际权威的学术组织ICDM,于06年12月年评选出的数据挖掘领域的十大经典算法: 1 C4.5 分类决策树算法 决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。...(未必能得到最优解) 3 SVM支持向量机 Support vector machines 它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。...在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。 假定平行超平面间的距离或差距越s大,分类器的总误差越小。...最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6 PageRank PageRank是Google算法的重要内容。...8 kNN k-nearest neighbor classification K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一
总的来说,AI 大模型学习是一个复杂而有挑战性的领域,需要综合考虑数据、模型、硬件、算法等多个方面因素,才能取得理想的结果。...以下是一些关于 AI 大模型学习理论基础的重要内容: 深度学习:深度学习是 AI 大模型学习的核心理论基础,它通过构建多层神经网络来实现对复杂数据模式的学习和表征。...以下是一些关于 AI 大模型学习理论基础的重要内容: 深度学习:深度学习是 AI 大模型学习的核心理论基础,它通过构建多层神经网络来实现对复杂数据模式的学习和表征。...以下是一些关于AI大模型训练与优化的重要内容: 数据预处理:在开始训练之前,需要对数据进行预处理,包括数据清洗、标准化、特征提取等。...———————————————— 方向四:AI大模型学习的伦理与社会影响 AI大模型学习的伦理与社会影响是一个备受关注的话题,以下是一些关于这个方向的重要内容: 数据隐私:AI大模型需要大量的数据来训练
数据挖掘十大经典算法(1) C4.5 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。...从数据产生决策树的机器学习技术叫做决策树学习, 通俗说就是决策树。 决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。...可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。...第一阶段是贝叶斯网络分类器的学习,即从样本数 据中构造分类器,包括结构学习和CPT 学习;第二阶段是贝叶斯网络分类器的推理,即计算类结点的条件概率,对分类数据进行分类。...在分 类问题中使用决策树模型有很多的优点,决策树便于使用,而且高效;根据决策树可以很容易地构造出规则,而规则通常易于解释和理解;决策树可很好地扩展到大 型数据库中,同时它的大小独立于数据库的大小;决策树模型的另外一大优点就是可以对有许多属性的数据集构造决策树
在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。...通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。...AI大模型学习的理论基础 数学基础: 线性代数:AI 大模型中大量使用向量和矩阵运算,如矩阵乘法、向量点积等,用于表示和操作数据。...此外,模型的性能也受到计算资源、数据质量和算法优化等因素的影响 AI大模型学习的伦理与社会影响 AI 大模型学习确实带来了一些伦理和社会问题,我们需要认真对待: 1....未来发展趋势与挑战 AI 大模型学习的未来发展一些关键的趋势包括: 1. 更大规模和更复杂的模型:随着计算能力的提高,我们将看到更大型、更复杂的模型出现,能够处理更庞大的数据和更复杂的任务。
C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法....最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。 6. PageRank PageRank是Google算法的重要内容。...8. kNN: k-nearest neighborclassification K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一...6、回复“答案”查看hadoop面试题题目及答案 7、回复“爱情”查看大数据与爱情的故事 8、回复“笑话”查看大数据系列笑话 9、回复“大数据1、大数据2、大数据3、大数据4”查看大数据历史机遇连载...专注大数据行业人才的培养。每日一课,大数据(EXCEL、SAS、SPSS、Hadoop、CDA)视频课程。大数据资讯,每日分享!数据咖—PPV课数据爱好者俱乐部!
本文主要介绍数据的预处理。 1、找大模型的数据 前面写了一篇文章《ChatGPT|大语言模型训练有哪些开源数据集? 》(https://mp.weixin.qq.com/s?...不过在开发大模型,需要根据实际的需求可以找到不同的数据,比如如果需要英文预料,那么就需要找到英文的预料,目前我们的 myllm 项目主要是中文小模型,所以找了一些中文相关数据: Wiki中文百科:https...2、数据预处理 下载数据以后,按照如下流程处理: 提取文件的文本数据 将文本数据进行截断,比如某段文本超过限制的上下文大小(如:512),就需要截断,增加截断标识 将文本转换为token,格式化存储token...3、合并多个数据 可以将多个数据,代码如下: # 将多个数据合并为一个文件 def pretrain_process(): process_wiki_clean() data_path_list...pretrain_data.bin,数据大小 361M。
本文先为初学者介绍了必知的十大机器学习(ML)算法,并且我们通过一些图解和实例生动地解释这些基本机器学习的概念。我们希望本文能为理解机器学习基本算法提供简单易读的入门概念。...所以,对于初入机器学习领域的学习者,我们放出来一篇颇受欢迎的博文——《初学者必知的十大机器学习算法》,尽管这只是针对初学者的。...机器学习算法就是在没有人类干预的情况下,从数据中学习,并在经验中改善的一种方法,学习任务可能包括学习从输入映射到输出的函数,学习无标签数据的隐含结构;或者是「基于实例的学习」,通过与存储在记忆中的训练数据做比较...步骤 2:转向下一个决策桩,对另一个输入变量进行决策 我们可以看到,之前的步骤中误分类的两个圆要比其余数据点大。现在,第二个决策桩要尝试正确地预测这两个圆。...上一步误分类的 3 个圆要比其他的数据点大。现在,在右边生成了一条竖线,对三角形和圆进行分类。
000 开源工具 机器学习的开源工具 Python机器学习库 C++矩阵运算库推荐 001 公开课 Machine Learning | Coursera Andrew NG在...院士机器学习课程视频及课件(英文) 机器学习|加州理工,老师是Yaser Abu-Mostafa,会从最基本的理论开始,为你构建机器学习的基础。...机器学习入门篇 1.1 机器学习介绍 机器学习-维基百科 Machine Learning-Wikipedia 机器学习简史 规则与机器学习 不建议为了机器学习而机器学习,对于初学者应该是先规则再机器学习...贝叶斯思想 MLAPP 第5章 Bayesian statistics 第6章 Frequentist statistics 机器学习第6章 贝叶斯学习 监督学习 ESL 第2章 Overview...of Supervised Learning 1.2 书籍 《统计学习方法》 第1章 统计学习方法概论 《机器学习》(Mitchell) 第1章 引言 PRML 第1章 Introduction
---- 新智元推荐 来源:大数据文摘(ID:BigDataDigest) 【新智元导读】数据不够大,就不能玩深度学习?...长期存在的一大挑战就是:只有极少数情况下有足够的数据进行深度学习。本文作者提出了一些比较实用的方法,从简单的经典机器学习建模方法开始着手解决这个问题,以应对文本数据量不够大的情况。...深度学习往往需要大量数据,不然就会出现过度拟合,本文作者提出了一些在文本数据量不够大的时候可用的一些实用方法,从而赋予小数据集以价值。...通常,我们需要大量数据来训练深度学习模型目的在于避免过拟合。...迁移学习是指使用为其他任务训练的网络参数来解决你自己的问题,这些网络参数通常是用大性数据集训练得到的。
持反方观点,为大技术时代的到来欢呼的,一位是北京大学光华管理学院新媒体营销研究中心副主任苏萌,另一位是日本政治家、内阁成员山本一太。...他提出“一台电脑论”,即科学家们研究所需的数据,最好用一台电脑就能装下,否则数据处理会过于繁琐,无助于解决问题。他结合自身经验说,随着数据量的增大,研究的准确性一开始会随之上升,但很快就会趋平。...这有三个原因:一是因为不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;二是完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;三是因为数据分析人才仍然极度匮乏...一位听众挑战正方,说,你们认为大数据过于庞杂纷繁,反而解决不了问题,那是不是说,当处理数据的计算工具变得足够好时,大数据就会变得有用?...正如Howard在发表“失败感言”时所说,“我们并非反对数据,只是反对大而无当的数据,数据本身当然非常重要”。人类已经并将继续产生日益庞大的数据,或许不论我们接受与否,大数据时代都已到来。
现在 Kaggle 大赛的情况基本是这样的,凡是非结构化数据相关,比如语音、图像,基本都是深度学习获胜,凡是结构化数据上的竞赛,基本都是 XGBoost 获胜。...要知道大部分的业务数据,都是以良好格式存储在关系数据库中的结构化数据,这也就是说,跟行业应用、业务优化这些真金白银息息相关的场景里,XGBoost是目前最好用的大杀器之一。...要知道深度学习虽然具有革命性,但是你去看看 Kaggle 上来自真实需求的那些竞赛课题,会发现大多数还是结构化行业数据的分析。...如果你在学习机器学习,那这个课程能够帮助你纵向掌握 XGBoost 及其所有相关基础知识,在你武器库里添加一个大杀器。...如果你急于用机器学习来解决工作中的一个问题,又没有很多时间完整学习,那么请考虑 XGBoost 吧。也许很多高手学了一大圈之后,发现最后还是 XGBoost 好用。
大数据文摘出品 编译:蒋宝尚 在机器学习中,寻找数据集也是非常重要的一步。质量高或者相关性高的数据集对模型的训练是非常有帮助的。 那么用于机器学习的开放数据集有哪些呢?...数据集查找器 Kaggle:Kaggle是由联合创始人、首席执行官安东尼·高德布卢姆(Anthony Goldbloom)2010年在墨尔本创立的,主要为开发商和数据科学家提供举办机器学习竞赛、托管数据库...https://www.kaggle.com/ UCI机器学习库(UCI Machine Learning Repository):这是网络上最早的数据集来源之一,是寻找各种有趣数据集的第一选择。...虽然用户提供的数据集的清洁度不太一样,但绝大多数都是干净的。我们可以从 UCI 机器学习库直接下载数据,无需注册。...https://www.aeaweb.org/resources/data/us-macro-regional 机器学习数据集 Labelme:数据集中包含大量有标注的图像数据。
很多行友说,想做项目学习和练手没有数据怎么办。又想给行哥投稿赚钱,没有数据拿头分析啊。...先别急,这里行哥给大家推荐一些数据来源,足够你去好好分析数据,这些数据用来学习和找工作都不是问题 1.公司学校 2.爬虫 3.白嫖 1.公司学校 对于公司和学校内部的数据,一般都是比较机密,但是你想主动去帮助他们处理...即帮助了老师们的工作,又学到了技术,一举两得的事情我是最喜欢的 2.爬虫 任何数据,只要你在网上能用肉眼看到,理论上都是可以爬取下来的,小到使用爬取个百度图片,大到把一个网站数据库连锅端了完全了没有问题...但是理论归理论,理想很丰满,实际上只能动手复制粘贴 3.白嫖 爬虫不如白嫖,网上的数据源特别多,但是也特别分散或者还收费(例如某觉中国),所以行哥这里给大家精选十大数据网站,让你白嫖到装满电脑为止 3.1...Kaggle数据集:https://www.kesci.com/home/dataset 这是一个集竞赛、数据和学习为一体的网站,之前烂大街的泰坦尼克号数据分析就是这个网站提供的数据源头。
应用程序将学习自我提高 应用程序作为新一代记录和机器数据分析以拥有自我提升能力,36大数据(微信号dashujue6),在云层,使用预测算法使得持续改进、持续集成和持续部署成为可能。...这些接口允许开发人员每天构建智能、数据驱动的应用程序。” 我们的预测是:到2016年,由于深度学习技术的发展将会出现更多的自主学习应用程序。...这也解释了为什么越来越多的公司采用让终端用户应用统计、寻求解决方案并且重视数据平台……36大数据(微信号dashujue6),人类不可能知道所有正确的事情,受自身的局限性,这些问题都含有偏见,会受自己的假设...Gartner副总裁兼研究员David Cearley把不断扩展的终点比作“设备网”36大数据(微信号dashujue6),他认为:“人们可以不断访问应用程序和信息并且与人、社会、政府和企业互动。...那些将复杂数据的信息可视化的工具越来越成熟且应用越来越广泛,36大数据(微信号dashujue6)。
编译:蒋宝尚 转载自:大数据文摘,未经允许不得二次转载 在机器学习中,寻找数据集也是非常重要的一步。质量高或者相关性高的数据集对模型的训练是非常有帮助的。 那么用于机器学习的开放数据集有哪些呢?...数据集查找器 Kaggle:Kaggle是由联合创始人、首席执行官安东尼·高德布卢姆(Anthony Goldbloom)2010年在墨尔本创立的,主要为开发商和数据科学家提供举办机器学习竞赛、托管数据库...https://www.kaggle.com/ UCI机器学习库(UCI Machine Learning Repository):这是网络上最早的数据集来源之一,是寻找各种有趣数据集的第一选择。...虽然用户提供的数据集的清洁度不太一样,但绝大多数都是干净的。我们可以从 UCI 机器学习库直接下载数据,无需注册。...https://www.aeaweb.org/resources/data/us-macro-regional 机器学习数据集 Labelme:数据集中包含大量有标注的图像数据。
java学习应掌握的九大能力有哪些?下面就跟着一起来看看吧! 在IT开发行业,Java工程师是一个可续持发展有前景的职业。那么,想要真正学好Java,那就要看看你是否真的掌握了这九大能力。 ...java学习应掌握的九大能力: 一、熟练的使用Java语言进行面向对象程序设计,有良好的编程习惯,熟悉常用的JavaAPI,包括集合框架、多线程(并发编程)、I/O(NIO)、Socket、JDBC...六、熟悉常用的关系型数据库产品(MySQL、Oracle),熟练的使用SQL和PL/SQL进行数据库编程。
下图总结了在 GitHub 中最受欢迎的开源深度学习框架排名,该排名是基于各大框架在 GitHub 里的收藏数,这个数据由 Mitch De Felice 在 2017 年 5 月初完成。 ?...谷歌开源 TensorFlow 后,立即吸引了一大批开发爱好者。TensorFlow 可以提供一系列的能力,例如图像识别、手写识别、语音识别、预测以及自然语言处理等。...子图执行操作允许你在图的任意边缘引入和检索任意数据的结果。这对调试复杂的计算图模型很有帮助。...数据显示在新框架和新硬件的配合下,模型每秒钟可以处理 4100 张图片。 ?...非开源 随着深度学习的不断发展,我们必将看到 TensorFlow、Caffe 2 和 MXNet 之间的不断竞争。另一方面,软件供应商也会开发具有先进人工智能功能的产品,从数据中获取最大收益。
领取专属 10元无门槛券
手把手带您无忧上云