大数据平台的基本功能和数据的导入导出对SQL任务、NoSQL任务、机器学习、批处理任务的支持
昨天(5月28号)由社科文献出版社初版的《大数据蓝皮书:中国大数据发展报告No.2》正式发布了。以“数化万物 智在融合”为主题的中国国际大数据产业博览会也京举行中。基本可以预见,在接下来的一段时期内关于大数据应用开发又将进入到一个新的阶段。
本话题暂不探讨是否有必要编写详细的测试用例,在确定要交付详细的测试用例这个前提下,分享如何更高效地完成测试用例的编写。
中联重科是国内领先的工程机槭、农业机械等高新技术装备研发制造商,是全球产品链最齐备的工程机械企业,为全球6大洲100多个国家的客户创造价值。
今天越来越多的企业认识到,大数据的掌控和分析能力将成为竞争力的核心,企业对大数据的投资也在不断扩大。Gartner调查显示,73%的企业计划在未来两年内投资大数据。以开源Hadoop、Spark等为基础的大数据基础平台解决方案和云服务如雨后春笋不断涌现,形成了近200亿美元的市场规模。然而对于很多企业用户来说,如何评价一个大数据平台的综合能力,常常是选型、平台建设和系统优化时面临的一大挑战。目前来看,国内外还缺乏一套能体现大数据特点,又简便易行,且被工业界广泛认可的大数据平台性能测试标准与工具。 记者日前
本文作者 耿立超,架构师,14年IT系统开发和架构设计经验,CSDN博客专家,著有《大数据平台架构与原型实现:数据中台建设实战》一书。 原文链接: https://laurence.blog.csdn.net/article/details/106851739 故事缘起 我们需要工程原型! 从2008年Hadoop成为Apache的顶级项目开始,大数据技术迎来了十多年的持续发展,其间随着Spark的异军突起,整个大数据生态圈又经历了一次“装备升级”,变得更加完善和强大。 今天,很多企业已经完成了早期对大数据
Kafka 是当下热门的消息队列中间件,它可以实时地处理海量数据,具备高吞吐、低延时等特性及可靠的消息异步传递机制,可以很好地解决不同系统间数据的交流和传递问题。
导读 近年来大数据业务规模迅速增长,为大数据平台运营治理带来了新的挑战:海量大数据任务的治理,缺乏统一、标准的数据与评估模型和治理工具,难以支持对大数据任务执行效率、稳定性等进行持续优化。腾讯大数据平台摸索出数据+算法驱动的“平台自治”方案,对于万亿级大数据分析逐步实现“自动化运营”,以一站式的自诊断、自优化、自管理能力,大大降低大数据产品使用门槛。
从互联网、移动互联网到物联网,数据量之巨大已突破想象边界。与此同时,实时数据分析的需求日益增长,那么,当数据量达到亿级、百亿级甚至万亿级规模,实时数据分析如何来做?尤其在To B/G来说,大多数企业和政府客户区别于互联网企业,自身不具备技术团队,缺乏技术运维能力,因此在搭建本地化万亿级大数据平台时,如何交付更为标准化、透明化设计的产品成为最大挑战。
来源:阿朱说 作者:吕建伟 ---- 自从中央发了十四五规划,现在各大央企国企都在纷纷制定自己企业的十四五的五年规划。 总体一个感受,和我们做的企业标准套件是一模一样的,不外乎是: 1、生产制造:工业互联网,想要的价值也都是设备监控与运维、安全监管、环保监管与能耗优化 2、大供应链:采购云-分销云-零售云 3、业务层就上述两个,下面就只需要集团统一管控: 集团统一财务管控:财务共享中心 集团统一人力管控:人力共享中心 集团统一流程管控:协同平台 集团统一数据管控:大数据平台 人们很多说大型巨型
大数据技术栈的发展是一个不断演进的过程,从最初的数据仓库、商业智能,到分布式计算和实时计算,再到如今的人工智能,每一阶段的技术栈都有其独特的应用场景。
声明:本文参考了淘宝/滴滴/美团发表的关于大数据平台建设的文章基础上予以整理。参考链接和作者在文末给出。
饿了么BDI-大数据平台研发团队目前共有20人左右,主要负责离线&实时 Infra 和平台工具开发。其中6人的离线团队需要维护大数据集群规模如下,
今天我们来看一下淘宝、美团和滴滴的大数据平台,一方面进一步学习大厂大数据平台的架构,另一方面也学习大厂的工程师如何画架构图。通过大厂的这些架构图,你就会发现,不但这些知名大厂的大数据平台设计方案大同小异,架构图的画法也有套路可以寻觅。
4月20日,京东大数据来到了北京大学光华管理学院,这次由京东大数据部平台运营管理负责人葛胜利老师给北大光华管理学院的师生们带来主题为“电子商务大数据平台技术架构与产品架构”的专题讲座,为大家讲述京东大数据平台如何在短短几年的时间里突破技术难关,实现产品创新,建设高效、安全、稳定的大数据平台,并以数据支撑京东的快速发展。 讲座中,葛胜利从京东大数据平台的“使命、架构、产品、运营”四大方面出发,全面的剖析了其中的奥秘。 在讲到平台使命时,胜利总提到,大数据平台在京东集团中的战略地位很重要,因为京东的公司运营是由
日前,中国信息通信研究院正式发布《城市大数据平台白皮书》,阐述了城市大数据的概念和内涵,分析了建设城市大数据平台对于破解智慧城市建设难题的意义,并介绍了我国城市大数据平台的发展现状。
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。
在业务增涨过程中,每个企业不知不觉积累积累了一些数据。无论数据是多是少,企业都希望让“数据说话”,通过对数据的采集、存储、分析、计算最终提供对业务有价值信息。
后web2.0时代,互联网、物联网每天都在生产大量数据,人们对于这些庞大数据资源的价值渴求,使得“大数据”的概念得以问世。如果说“数据”是支撑未来核心技术的基础“原材料”,那么“大数据”正在演变成一种战略资源,当“用户需求导向”成为企业共识,大数据的收集、挖掘和分析开始支撑企业的业务运转、营销策略乃至战略方向,数据成为企业愈加珍视的宝贵资产。 目前,建设有大数据平台的企业不在少数,对比传统数据库,大数据平台数据大量集中,且蕴含更高价值,其安全建设要求明显更高。然而,由于大数据平台使用非结构化数据库类型,以及
大数据已不再是一个单纯的热门词汇了,随着技术的发展大数据已在企业、政府、金融、医疗、电信等领域得到了广泛的部署和应用,并通过持续不断的发展,大数据也已在各领域产生了明显的应用价值。 企业已开始热衷于利用大数据技术收集和存储海量数据,并对其进行分析。企业所收集的数据量也呈指数级增长,包括交易数据、位置数据、用户交互数据、物流数据、供应链数据、企业经营数据、硬件监控数据、应用日志数据等。由于这些海量数据中包含大量企业或个人的敏感信息,数据安全和隐私保护的问题逐渐突显出来。而这些问题由于大数据的三大主要特性而
现在各种新名词层出不穷,顶层的有数字城市、智慧地球、智慧城市、城市大脑;企业层面的有数字化转型、互联网经济,数字经济、数字平台; 平台层面的有物联网,云计算,大数据,5G,人工智能,机器智能,深度学习,知识图谱;技术层面的有数据仓库、数据集市、大数据平台、数据湖、数据中台、业务中台、技术中台等等,总之是你方唱罢他登场,各种概念满天飞…
揭开大数据生态圈背后的真相,切实了解开发者对大数据平台的需求,用真实数据分析大数据行业发展趋势及产品方向。近日,在2014中国大数据技术大会召开前夕,CSDN特推出“2014中国大数据有奖调查”活动,旨在更全方位地洞察中国大数据产业现状,为大数据技术从业者和创业者们提供良好的参考与建议。 公司使用大数据的基本情况 时至今日,无论你是来自互联网行业、通信行业,还是金融行业、服务业或是零售业,相信都不会对大数据感到陌生。据调查报告显示,32.5%的公司正在搭建大数据平台,处于测试阶段;29.5%的公司已经在生
在大数据产业近十年潮起潮落的变迁中,有一座穿越迷雾的灯塔,驱散了人们对数据应用的疑虑,照亮了数据价值回归的征程。
现代商业竞争已经从渠道、资源向系统整体效率倾斜,而效率的竞争很大程度上来自于数据能力的支撑。 当我们从数据平台方的视角出发会发现演进路上存在着诸多挑战,比如: 1. 数据领域的生态非常庞大,针对不同场景在资源、数据规模、时效的权衡下会衍生出不同的架构和组件,以及随之带来的团队碎片化,设备资源的重复投入,数据一致性的焦虑,技术选型的困难和迁移的潜在风险; 2. 在伴随业务扩张的过程中,如何平滑而透明地解决伸缩性,用好自建以及混合多云资源;如何建设一站式多租户的数据工具链,在开发生产以及租户之间做好共享和隔离的
在大数据的发展当中,对相关专业人才的需求是在持续增长的,包括大数据开发、数据分析挖掘等不同的数据处理环节,都形成了相应的岗位体系,大家各自负责不同的环节,共同完成大数据处理任务。今天我们主要来讲讲大数据开发就业,了解大数据开发有哪些岗位?
大数据作为当下最为热门的事件之一,其实已经不算是很新鲜的事情了。如果是三五年前在讨论大数据,那可能会给人一种很新鲜的感觉。大数据作为当下最为重要的一项战略资源,已经是越来越得到国家和企业的高度重视,我们从大数据被上升到国家战略层面就可窥见一二!
导读:本期“谁是数据英雄?传统企业大数据应用案例”给大家介绍《 兴业银行:信用卡背后的数据生命线》。兴业银行作为首批试水大数据的商业银行之一,借助大数据的关键技术和核心优势,通过对消费者行为的分析和
随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些有价值的内容。此时第一步需要做的是把数据采集过来。数据采集是大
👆点击“博文视点Broadview”,获取更多书讯 随着大数据行业的发展,大数据生态圈中相关的技术也在一直迭代进步,作者有幸亲身经历了国内大数据行业从零到一的发展历程,通过本文希望能够帮助大家快速构建大数据生态圈完整知识体系。 目前大数据生态圈中的核心技术总结下来如图1所示,分为以下9类,下面分别介绍。 图1 1 数据采集技术框架 数据采集也被称为数据同步。 随着互联网、移动互联网、物联网等技术的兴起,产生了海量数据。这些数据散落在各个地方,我们需要将这些数据融合到一起,然后从这些海量数据中计算出一些
就是指各种大数据计算框架,存储系统、SQL引擎等等,这些技术比较常用,经过最近十几年的发展,主流的技术产品相对比较集中,主要就是MapReduce、Spark、Hive、Flink技术的产品。
创建大数据平台,是个系统性的工程,并不像简简单单开发一款APP一样,你要深度的了解当前的环境以后的发展。事实上,做大数据平台不是做大数据本身,而是寻找大数据与行业、与业务的某种关联,内在的联结点,能否联姻成功,取决于策划与开发的能力。策划开发得好,事半功倍,会对行业和业务产生不可估量的价值,策划与开发的不好,则会竹篮打水一场空,费时费力自讨苦吃,成为“鸡肋”在所难免。
9月25日,工业和信息化部信息化和软件服务业司将“2018年大数据产业发展试点示范项目名单”进行公示。
近期,由大数据产业生态联盟发起的“第十三期优秀大数据产品、解决方案和应用案例”测评结果发布,广域铭岛天满大数据平台和Geega天满大数据解决方案分别入围。
最近有几个群友问我大数据怎么入门,作为一个零基础大数据入门学习者该看哪些书呢?我结合自己看过的书和了解到的比较好的数据,给大家分享一下。
金融科技&大数据产品推荐:BIGDAF——专业的Hadoop大数据安全防火墙
作者 | 宋文欣 以 Hadoop 为中心的大数据生态系统从 2006 年开源以来,一直是大部分公司构建大数据平台的选择,但这种传统选择随着人们的深入使用,出现的问题也越来越多,比如:数据开发迭代速度不够快、集群资源利用效率过低、新的开发工具集成非常复杂等。这些问题已经成为困扰企业数字化转型加速迭代和升级的主要障碍。 而传统大数据平台通常是以 Hadoop 为中心的大数据生态技术。一个 Hadoop 集群包含 HDFS 分布式文件系统和以 Yarn 为调度系统的 MapReduce 计算框架。围绕 H
自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 WeDataSphere 的实践情况。
如今,企业都面临着日益增长的数据量、各种类型数据的实时化和智能化处理的需求。此时,云原生大数据平台的高弹性扩展、多租户资源管理、海量存储、异构数据类型处理及低成本计算分析的能力,受到了大家的欢迎。但企业应该如何做好大数据平台的云原生改造和升级呢?
本文首先介绍了大数据架构平台的组件架构,让读者了解大数据平台的全貌,然后分别介绍数据集成、存储与计算、分布式调度、查询分析等方面的观点,最后是专家眼里大数据平台架构的发展趋势。
2021年8月20日,贵州农信行社数据仓库软硬件采购项目单一来源采购公示发布。 拟采购商品信息:行社数据仓库软硬件(GaussDB数据库及大数据软件License部分) 采用单一来源采购方式的原因及相关说明:大数据平台由贵安迁移至观山湖数据中心时,使用了华为泰山服务器和大数据产品,用于搭建观山湖数据中心大数据平台。现由于数据量增长大数据平台需进行扩容,鉴于后续应用扩展及行社数仓项目建设,为保持服务延续性及前后软硬件产品的一致性,同时考虑到系统兼容性,便于投产后运维,拟继续采购华为系列产品用于扩容大数据平台
随着数字化转型的不断深入,在企业中,大数据平台建设是许多技术人关心的内容。随着企业的发展,数据量不断增长,原有的数据平台和数据库已经无法满足企业的需求。这时,企业需要对数据平台和数据库进行升级或迁移。但是,这个过程并不容易,需要耗费大量的时间和精力。 在大数据平台升级或迁移过程中,企业需要考虑很多因素,如数据的安全性、可靠性、稳定性等。同时,企业还需要考虑如何保证数据的一致性和完整性。如果在升级或迁移过程中出现问题,可能会导致数据丢失或损坏,给企业带来不可估量的损失。 为你给你提供更多可靠的实践案例,在即将
数据服务业务是未来趋势,荣之联刚刚发布的大数据平台DataZoo有啥亮点?
日志是大数据平台重要数据来源之一,应用程序日志一方面记录各种程序执行状况,一方面记录用户的操作轨迹。Flume 是日志收集常用的工具。
点击上方蓝字每天学习数据库 | 导语 4月27日,在天府之国,与你共享大数据与Alluxio的技术魅力。 本期技术沙龙将会聚焦在大数据、存储、数据库以及Alluxio应用实践等领域,邀请腾讯技术专家和业界技术专家现场分享关于Alluxio系统的基本原理、大数据系统架构、数据库应用运维、AI计算机视觉技术及落地实践等主题,带来丰富的实战内容和经验交流。 13:00 活动签到 14:00 开源大数据存储系统Alluxio的新特性介绍与缓存性能优化 分布式文件系统处于大数据系统中基础地位,在行业大数
*本文原创作者:mcvoodoo,本文属FreeBuf原创奖励计划,转载请联系help@freebuf.com 随着大数据的发展,从银行到P2P再到保险、证券等,越来越多的金融企业开始建设自己的大数据平台。传统上对于数据的管理,金融界是有经验的。 但在当前以Hadoop为基础的大数据平台,接触数据的人更多,数据使用的更频繁,数据的内外交互实时,数据种类更复杂,对安全带来了更严峻的挑战。 从金融业态上来说,包括征信、消费金融、P2P、众筹、互联网银行、互联网保险等金融企业,都会需要大数据平台来支撑业务需要。
国家 2035 远景规划提出要加快全面数字化转型的步伐,而“大数据平台”是数字化转型的基础技术之一。经过六年多的探索和实践,微众银行打造了一套在金融领域“自主可控”的开源大数据平台。对于任何企业来说,建立和维护一个大数据平台都不是一件容易的事情,而建设一个有特色的、完整易用的大数据平台,显然更是一件技术难度极高的事情。InfoQ 采访了微众银行 WeDataSphere 主创团队,希望他们的实践经验能给大家带来一些启发和思考。
领取专属 10元无门槛券
手把手带您无忧上云