前几天和三个学计算机专业的学生聊天时聊到了大数据开发方面的话题,他们三个人中,有两个已经进入企业开始工作,另外一个还是大二学生,但已经开设了自己的工作室。他们都是从事程序开发方面工作的。大数据开发自然都有关注到,只是目前的大数据技能水平只能说是“小菜鸟”吧,连入门还谈不上。
最近,谷歌爸爸又收购了一家公司。长期以来,谷歌致力于推动围绕 GoogleCloud 的企业业务,但在这方面的表面一直被亚马逊和微软吊打,这次的收购正是为了弥补自身的短板。
另外,你也要考虑时间、精力、金钱等各方面的投入情况。学习和掌握大数据相关技术也非一朝一夕之事,不可能一蹴而就,一般的培训课程只能达到入门级别的介绍和讲解,真正要学会并很好地运用大数据技术你还需要后续更深入的学习和大量的实践。所以需要你一个良好的学习规划。
Java开发是IT行业的经典岗位,行业当中存在普遍的需求,Web开发、Android开发、游戏开发等岗位,基本上Java语言是主力队伍。而进入大数据时代,Java又在大数据方向上有了用武之地。今天我们主要来讲讲Java大数据开发做什么,又该如何进行成长路线规划。
Python和Java,是大数据行业最常见的两种编程语言,对于想转行大数据的人来说,学习哪个语言是比较好的选择呢?
前言 大家好,我是程序员Manor,我希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。 前两天有学妹私信我说,她已经上完大一,大数据专业的,只学过大数据导论,问我大
在知乎看见了一个数据分析师的真实经历,忍不住唏嘘。 图片截自知乎 原文太长,简单概括一下:楼主是香港城市大学的硕士,在银行工作四年后想跳槽,但因为能力不符合公司的招聘要求,总是一面就挂了。 有人说行业人才饱和,竞争激烈;也有人说楼主简历写得笼统,不够亮眼;但最主要的原因其实是:没有建立起自己的技术护城河。 有很多公司的数据分析岗,入职之后每天都在取数、取数、取数,成了货真价实的crud/sql boy。这样的岗位即使工作十年,能带来的成长也极其有限。 如果自己不能精通一套有门槛的硬技术,不能和新人拉开差
一入编程深似海,从此女神是路人。没办法,这行就这样。你不学Spring,总不是跑去学JVM/微服务架构/分布式去了,不断学习根本避免不了。所以关键在于把时间投在学什么上比较划算。
从大数据开发的工作内容来看大数据开发主要负责大数据的大数据挖掘,数据清洗的发展,数据建模工作。
大数据人才缺口达150万 全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达1500000! 事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。 大数据专
大数据人才缺口达150万 全球最顶尖管理咨询公司麦肯锡(McKinsey)出具的一份详细分析报告显示,预计到2018年,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,对于懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达1500000! 事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数了(美元)。 如大
针对第一个问题,就是ETL技术-数据的抽取,清洗,加载。传统数据抽取、清洗、加载是无法做到的。例如一个1TB的数据,需要抽取一些客户的基本信息。上万的文件,多种数据库,每个数据库有很多节点等,这些问题如何解决。第二是时间问题,如果这个ETL过长需要半个月时间,那么就没有意义的。
IT行业发展速度快,市场需求大,而且,程序员薪酬高、福利待遇高,成为很多从业者向往的职业,当然,也刺激了很多非计算机专业的从业者进入该领域。转行进入IT行业在最近的几年一直是个热门,那么对于0基础的求学者,入行大数据开发需要什么基础呢?
大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。
如果我们把大数据应用看成一个嗷嗷待哺拥有无限潜力的婴儿,某一领域专业的海量的深度的数据就是喂养这个天才的奶粉。奶粉的数量决定了婴儿是否能长大,而奶粉的质量则决定了婴儿后续的智力发育水平。
顾名思义大数据是一个以数据为核心的产业。大数据产业生成流程从数据的生命周期的传导和演变上可分为这几个部分:数据收集、数据储存、数据建模、数据分析、数据变现。
在大数据当中,对于Java基础部分的学习,其实也是非常重要的一个部分。在执行大数据开发任务时,Java是主流的开发语言,也是大数据开发者们的“主要工具”。今天的大数据入门分享,我们就来讲讲,大数据学习当中Java基础要掌握哪些?
很多想入门大数据的人一直处于迷茫阶段,不知道自己该不该转行学习大数据,不知道自己是否要转大数据。
如今,大数据的潜入已经开始在日益的改变着各行各业以及我们的生活,同时大数据已经开始广泛的应用于电网运行及优质服务等等各大领域,并且它也正在日益改变着各行各业的生产生活,最重要的是它还引领了大部分大数据人才的变革。但是,对于我们来讲,大数据这个行业就业前景怎么样呢?这对于迷茫的我们来说其实是一个非常重要的信息。
经过这么多年的发展,大数据的技术正处于群雄逐鹿阶段 ,面对这么多技术框架,我们得学会做减法。
大数据和人工智能,都是当下的技术热点,受到的关注都不少,并且这两个技术领域,本身也存在很强的关联性,因此很多人也会把这两者拿来做对比,从技术难度到未来前景,大家都非常关注。大数据还是人工智能?哪个未来发展更好?今天我们来具体聊一聊。
要说什么是大数据我想大家多少已经有所了解了,很多落地的案例已经深入到了我们的生活中。大数据具有数据量大、数据类型丰富复杂、数据增长速度快等特点,一切的数据分析必须建立在真实的数据集上才会有意义,而数据质量本身也是影响大数据分析结果的重要因素之一。
再更一篇技术杂谈类的文章。。。粉丝甲:所以这就是你拖更系列文章和视频的理由吗???粉丝乙丙丁:就是!就是!都断更多久了?我:咳。。。最近杂事缠身,还望恕罪!下面是食用须知:
在之前的《Java大数据:大数据开发必须掌握的四种数据库》一文中,我们提到了MongoDB、Redis、ElasticSearch、Hbase,系列文也对MongoDB、Redis、Hbase都做了简单的入门介绍。今天是系列文的最后一篇,我们来讲全文搜索引擎Elasticsearch。
“程序员能纯靠技术渡过中年危机吗?” ▲截图来源于知乎 这个问题吸引了许多码农分享经验,热赞均表示“很难”,因为绝大部分人都面临着2种结局: 没精力学习,技术迭代太快,被淘汰 有技术,新人工资低还更能卷,被淘汰 很显然,一门技术吃到老的时代已经过去,如果你: 👉刚入行/还不是程序员 建议直接找一个能被技术充分赋能,越老越吃香的岗位! 👉已经有2年以上工作经验 建议再学习一门前景好、与业务关联紧的技术,成长为π型人才,对抗中年危机(π型人才:至少拥有两种专业技能,并能将多门知识融会贯通的高级复合型人才)。
马上奔三,对程序员35岁的魔咒耿耿于心。上有老下(即将)有小,人到中年实在没有勇气面对251坐牢警告,和裁员为了n+1的赔偿和hr斗志斗勇,只能尽量延长自己的职业道路亦或是另寻出路。
阶段一、大数据、云计算 - Hadoop大数据开发技术 课程一、大数据运维之Linux基础 本部分是基础课程,帮大家进入大数据领域打好Linux基础,以便更好地学习Hadoop,hbase,NoSQL,Spark,Storm,docker,openstack等众多课程。因为企业 中的项目基本上都是使用Linux环境下搭建或部署的。 image.png 课程二、大数据开发核心技术 - Hadoop 2.x从入门到精通 本课程是整套大数据课程的基石:其一,分布式文件系统HDFS用于存储海量数据,无论是Hive
大数据又称巨量资料,就是数据量大、来源广、种类繁多(日志、视频、音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据。
大家好,我是 梦想家 Alex 。我们都知道 github 对于程序员们而言,就是一个巨大的“聚宝盆”,上面不仅有很多优质的开源项目,还有很多热爱开源分享的开发者。但如何从浩如烟海的宝藏中,筛选出适合自己的优质项目呢?本期内容,我就为大家推荐几个我认为还不错的大数据学习必备的 牛 X 项目,希望大家看完有所收获。
不少伙伴在后台私聊学堂君,想考腾讯云认证,但不知道选哪些方向,也不知道考哪个方向的含金量最高。
为了方便大家梳理清楚大数据学习路线,本文从以下四个方面来介绍大数据技术: 大数据技术栈 大数据发展史 大数据应用 大数据开发岗位
manor学习大数据开发满打满算也有一年了,其中也发现不少好用的大数据开发提升效率的软件,推荐给刚入门/入行的你:
随着信息产业的迅猛发展,大数据应用逐渐落地,行业人才需求量逐年扩大。大数据成为目前最具前景的高薪行业之一,大数据分析工程师、大数据开发工程师等大数据人才也成为市场紧缺型人才,薪资一涨再涨。
作为大数据技术生态当中的第一代框架,Hadoop至今仍然具有不可替代的核心优势,对于企业而言,Hadoop在底层架构上所提供的支持,仍然是企业入场大数据的重要支持框架。今天的大数据开发学习分享,我们就主要来讲讲Hadoop序列化的入门知识点。
在大数据时代的大数据管理形式不断发展过程中,给企业发展带来冲击非常巨大。因此,企业要根据我国信息技术不断发展的形式,对大数据管理框架进行全面的设计和创新,如图1所示。在大数据的处理的过程中,主要是围绕着数据资产进行管理的,同时对大数据时代的大数据管理制度,进行全面的规划行、设计、创新,这样对其它信息技术管理领域,提供了便利的条件。其实,大数据时代的大数据管理最主要的目的,就是将大数据的价值进行充分的展现。另外,在大数据时代的大数据管理框架不断创新的过程中,有效的实现了大数据共享等性能,不断扩大了大数据时代的大数据管理的内容,对我国现代化信息技术的发展,起到了重要的作用和意义。
在学习大数据之初,很多人都会对编程语言的学习有疑问,比如说大数据编程主要用什么语言,在实际运用当中,大数据主流编程是Java,但是涉及到Spark、Kafka框架,还需要懂Scala。今天的大数据入门分享,我们就来对Java和Scala这两门语言的编程做个对比。
0x00 前言 周末闲来无事,想到从13年接触大数据这个名词,到现在也有4年的时间了,随便聊一聊自己和大数据接触的那些经历。 0x01 大数据 “什么是大数据?” 这个问题其实挺难回答的,因为随着技术和时代的变化,一些名词总是被赋予不同的概念,大数据也是,在居士的认知历程中,大数据的概念在某个时期有很广的含义,然后过了一段时间之后,就被划分出来了一些,然后又被划分出来一些,不知道以后还会是什么样子。 居士在这里聊一下自己对于大数据不同阶段的认识。 2013年初 2013年初,刚接触大数据的概念,当时最
不可否认,大数据在这些年的发展当中,实现大数据处理的核心技术,始终是分布式。基于分布式技术架构,有分布式存储、分布式计算等相应的技术框架组件,形成了完善的技术生态,为大数据处理需求任务提供相应的解决方案。今天我们就从大数据平台架构的角度,来聊聊分布式技术架构。
在之前的《大数据开发:OLAP开源数据分析引擎简介》一文当中,我们对主流的一些开源数据分析查询引擎做了大致的介绍,今天的大数据开发分享,我们具体来讲解其中的Presto查询引擎,是什么,为什么会出现,又能够解决什么样的数据处理需求。
本文隶属于专栏《100个问题搞定大数据理论体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
在Java大数据开发任务当中,数据存储是非常关键的一环,涉及到分布式文件系统、分布式数据库,数据库是后端系统当中支持数据存储的重要组件。今天我们就来聊聊Java大数据,数据库开发从入门到精通,应该如何去一步步掌握。
Kafka在目前的大数据技术生态体系当中,是尤其得到重用的,尤其是针对于实时消息流处理,Kafka的性能是值得称赞的。Kafka学习,也是大数据学习当中的重要一课。今天的大数据开发学习分享,我们就主要来讲讲Kafka入门须知的几组核心概念。
近几年的大数据,确实在行业当中得到越来越多的重视,越来越多的企业开始成立数据业务部门,针对企业不断累积起来的数据资产,进行价值挖掘和应用。对于企业而言,大数据相关人才的引进,有大数据开发,也有数据分析,今天我们就来讲讲大数据开发岗和分析岗两者的区别。
在大数据的发展当中,对相关专业人才的需求是在持续增长的,包括大数据开发、数据分析挖掘等不同的数据处理环节,都形成了相应的岗位体系,大家各自负责不同的环节,共同完成大数据处理任务。今天我们主要来讲讲大数据开发就业,了解大数据开发有哪些岗位?
之前找实习还有秋招的时候看了不少大神的帖子,现在也来回馈一下~ 感觉这方面帖子也不多。
看到About云中很多成员,特别是初级入门Hadoop成员,当然也包括已经工作的成员,经常会遇到Cloudera的问题。About云邀请了鸟叔,一线资深大数据工程师,任职于某知名直播、免费电子书平台、具有5年的大数据开发经验,从事过开发、大数据架构设计等。下面给大家介绍了企业为什么使用Cloudera及在企业的作用。 1.为什么许多企业使用Cloudera Manager Cloudera Manager的设计目的就是针对企业,为了方便企业数据中心的管理简单和直观,在一定程度上降低了公司的成本 ①人员成本:减少了搭建集群的人员和维护人员; ②时间成本:在一定程度上较Apache版本减少搭建时间,小白式安装,维护时间,任务运行时间, ③提高了公司的资源使用,设置了资源池,有利于任务的高效处理,解决了大数据技术栈中各组件间的兼容性。同时Cloudera Manager提供了一系列的报告和诊断工具,有利于集群性能优化,提供了中央控制器对集群配置统一处理修改。 在功能上 Cloudera Manager 宕机也不会影响到其他组件的任务运行,配置存放于sql数据库,避免了运维人员误操作导致的集群运行失败,主要得益于Cloudera Manager的架构设计。 在组件配置中类window操作,不需要写命令,看到即得到,同时他也提供了对应的Api功开发者使用。 对于权限也分完全管理员和一般管理员,提高了集群的安全性,当集群出现警告会第一时间通过邮件通知,有效的降低了集群宕机的风险。 2.Cloudera Manager 在企业的作用 企业需要的就是这种能高效处理,把更多时间投入到开发的工具上,所以许多企业都会选择基于Cloudera Manager 监控的CDH版本的集群, (1)有效的监控集群的健康状态 (2)有效的解决了hadoop生态圈中各组件及版本的兼容性。
大数据已经成为时代发展的趋势,很多人纷纷选择学习大数据,想要进入大数据行业。大数据技术体系庞大,包括的知识较多,系统的学习大数据可以让你全面掌握大数据技能。学习大数据需要掌握哪些知识?
在流式计算越来越受到主流青睐的市场状况下,流式计算框架技术的掌握,正在成为大数据学习当中的重要部分。以Flink框架来说,作为新一代的流计算框架,越来越多地出现在大数据开发者们的技能树当中。今天的大数据入门分享,我们就来讲讲FLink的几个核心概念。
最近发现有些同学并不太了解大数据开发工程师这个职位,所以想简单介绍一下什么是大数据开发工程师,当前互联网公司的数据开发到底是什么样子的?和一般的Java或者PHP工程师在工作上有什么区别?
领取专属 10元无门槛券
手把手带您无忧上云