首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

最流行的三数据建模工具

只有数据模型将数据有序的组织和存储起来之后,大数据才能得到高性能、低成本、高效率、高质量的使用。数据建模是通过定义和分析数据需求,以支持信息系统内的业务流程。 以上看来,数据建模至关重要。...数据建模过程需要专业的建模人员,业务人员以及潜在信息系统的用户紧密工作在一起。...数据建模是认识数据的过程,数据模型是数据建模的输出模型有很多种,例如企业数据模型,物理模型,逻辑模型,业务模型,数据使用模型等等。...本文列出的工具都是精挑细选的数据建模工具。 PowerDesigner PowerDesigner是目前数据建模业界的领头羊。...创始人兼CEO王琤:曾任职erwin全球研发总监,拥有超过十年以上数据建模数据管理的从业经验。

8.8K21

数仓建模与分析建模_数据仓库建模数据挖掘建模

;设计一个时间非常的分区,如 9999-12-31,存放截至当前未结束的数据 已结束的数据存放到相应的分区,存放未结束数据分区,数据量不会太大,ETL 性能好 无存储浪费,数据全局唯一 业务系统可能无法标识业务实体的结束时间...[外链图片转存中…(img-uQis5F2c-1645262440294)] 范式 第一范式:属性不可分割 第二范式:消除不分函数依赖 第三范式:消除传递依赖 关系建模与维度建模 关系建模:将复杂的数据抽象为两个概念...维度建模:模型相对清晰、简洁。维度模型以数据分析作为出发点,不遵循三范式,故数据存在一定的冗余。维度模型面向业务,将业务用事实表和维度表呈现出来。 4....维度建模一般按照以下四个步骤:选择业务过程→声明粒度→确认维度→确认事实。...同样数据被计算了两次,实际上类似的场景还会更多。 那怎么设计能避免重复计算呢? 针对上述场景,可以设计一张地区宽表,其主键为地区ID,字段包含为:下单次数、下单金额、支付次数、支付金额等。

1.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据建模-维度建模-维度设计

    作为维度建模的核心,我们在企业级的数据仓库中必须保证维度的唯一性。以淘宝商品维度为例,我们有且只允许有一个维度定义。 第二步:确定主维度表。...(3)同一类数据基于范式建模,拆分成同一类型数据库中多张的物理表,比如商品,有商品主表和商品扩展表,商品主表存商品基本信息;商品扩展表存储商品特殊信息,如不同产品线定制化的信息等;比如会员,有会员主表和会员扩展表...源系统影响差异小的进行整合;业务关系小、源系统影响差异的进行分而置之。...但在阿里巴巴数据仓库建设的实践过程中,虽然我们使用的是Kimball的维度建模的理论,但实际并未使用代理键。我们是如何处理缓慢变化维度,如何记录变化历史的呢?为什么不使用代理键呢?  ...但是这种存储方式对于下游使用方的存在一定的理解障碍,特别是ODS的数据面向的下游用户包含数据分析师、前端开发等,这些人群不怎么理解维度模型的概念,因此会存在较高的解释成本。

    56930

    数学建模【三模型+十算法】

    文章目录 前言 一、三模型 1️⃣预测模型 2️⃣优化模型 3️⃣评价模型 二、十算法 1️⃣蒙特卡罗算法 2️⃣数据拟合、参数估计、插值等数据处理算法 3️⃣线性规划、整数规划、多元规划、二次规划等规划类问题...4️⃣图论算法 5️⃣动态规划、回溯搜索、分治算法、分支定界 6️⃣最优化理论的三非经典算法 7️⃣网格算法和穷举法 8️⃣一些连续离散化方法 9️⃣数值分析算法 图象处理算法 ---- 前言 提示...:文章为个人学习笔记备忘录 ---- 一、三模型 1️⃣预测模型 预测模型:神经网络预测、灰色预测、拟合插值预测(线性回归)、时间序列预测、马尔科夫链预测、微分方程预测、Logistic 模型等等。...二、十算法 1️⃣蒙特卡罗算法 该算法又称随机性模拟算法,是通过计算 机仿真来解决问题的算法,同时可以通过模拟可以来检验自己 模型的正确性,是比赛时必用的方法 2️⃣数据拟合、参数估计、插值等数据处理算法...比赛中通常 会遇到大量的数据需要处理,而处理数据的关键就在于这些算 法,通常使用 Matlab 作为工具 3️⃣线性规划、整数规划、多元规划、二次规划等规划类问题 建模竞赛大多数问题属于最优化问题

    67610

    数据数据建模

    今天给大家分享一下 数据开发工作中数据建模的步骤, 第一步:选择模型或者自定义模型 这第一步需要我们基于业务问题...如果没有现成的模型可用,就需要我们自定义模型了,自定义模型不是一件容易的事情,需要非常nb的数学基础和科研精神,当前绝大多数人所谓的建模,都只是选择一个已有的数学模型来工作而已。...这一步,就需要将可用的模型开发出来,并部署在数据分析系统中,然后可以形成数据分析的模板和可视化的分析结果,以便实现自动化的数据分析报告。 应用模型,就是将模型应用于真实的业务场景。...构建模型的目的,就是要用于解决工作中的业务问题的,比如预测客户行为,比如划分客户群,等等。...实际上,模型优化不仅仅包含了对模型本身的优化,还包含了对原始数据的处理优化,如果数据能够得到有效的预处理,可以在某种程度上降低对模型的要求。

    97620

    数据挖掘与数据建模的9定律(深度长文 收藏细读!)

    以及它们是如何相关的; 数据预处理就是利用业务知识来塑造数据,使得业务问题可以被提出和解答(更详尽的第三条—准备律); 建模是使用数据挖掘算法创建预测模型,同时解释模型和业务目标的特点,也就是说理解它们之间的业务相关性...最简单的解释可以概括为“数据是困难的”,经常采用自动化减轻这个“问题”的数据获取、数据清理、数据转换等数据预处理各部分的工作量。...这是数据预处理重要的原因,并且在数据挖掘过程中占有如此的工作量,这样数据挖掘者可以从容地操纵问题空间,使得容易找到适合分析他们的方法。 有两种方法“塑造”这个问题空间。...第一种方法是将数据转化为可以分析的完全格式化的数据,比如,大多数数据挖掘算法需要单一表格形式的数据,一个记录就是一个样例。...准确性是指正确的预测结果所占的比例;稳定性是指当创建模型的数据改变时,用于同一口径的预测数据,其预测结果变化有多大(或多小)。

    1.6K50

    领域建模数据建模

    本文重点主要是比较OO建模数据建模两者特点,这两者我们已经发现属于两个不同方向,也就是说,属于两个完全不同的领域,在J道其他文章里我们 其实已经把这两个领域上升为不同的学科,数据建模属于数学范畴思维...别小看这样一个小小包装,却决定了以后代码的维护性和扩展性, 打个比喻,日常生活中我们经常用各种盒子和袋子包装一些东西,这样做就是为了方便这些东西的携带或储藏,小到生活, 到客观世界每个地方,都是包装分类的影子...因为方法的不同,软件路线也就存在下面几个路线:完全面向对象类建模路线(J道网站和笔者一直致力于这种路线的推介); 一种是对象和关系数据库混合型,还有一种就是过去的完全关系数据库类型软件(如Foxpro/...Evans DDD可以说是近期与SOA相提并论的两重要技术思想,SOA是着重于软件集成方面;而EvansDDD才是着重我们软件开发上, 在大部分情况下,软件开发重要程度不亚于软件集成,但是因为软件开发方面开源力量冲击...领域建模属于与具体.NET或Java技术无关的设计思想,有人总是说:.NET比Java简单,其实这又是一个误区,如果都达到同样设计水准,无论使用.NET或Java,都需要付出同样的努力;那为什么有人觉得

    65930

    数据建模与数仓建模_数仓建模的几种方式

    数据模型 所谓水无定势,兵无常法。不同的行业,有不同行业的特点,因此,从业务角度看,其相应的数据模型是千差万别的。...在开始介绍数据模型之前,我们先看一个东西,那就是算法与数据结构,我们知道算法是解决特定问题的策略,数据结构处理问题的数学模型,数据结构 有三要素,逻辑结构、存储结构、数据操作、这里的数据操作其实就是算法...,例如我们定义的图的数据结构,然后在这个基础上对图进行操作形成特定的算法,例如深度遍历和广度遍历;我们的数据结构其实是针对特定的数据问题而抽象和设计的,也就是说一种数据结构针对的是一类特定的问题。...数据模型也一样,只不过数据结构是针对特定问题的,而数据模型是针对特定业务的,然后多业务进行抽象,形成了行业特征,在银行业,IBM 有自己的 BDWM(Banking data warehouse model...数据仓库的设计始于数据模型,企业的数据模型适用于操作型环境,而修改后的模型适用于数仓,其实就是业务模型—> 概念模型—>逻辑模型—>物理模型的这一过程 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人

    53940

    ETL和数据建模

    一、什么是ETL ETL是数据抽取(Extract)、转换(Transform)、加载(Load )的简写,它是将OLTP系统中的数据经过抽取,并将不同数据源的数据进行转换、整合,得出一致性的数据,然后加载到数据仓库中...二、数据仓库的架构 数据仓库(Data Warehouse \ DW)是基于OLTP系统的数据源,为了便于多维分析和 多角度展现将其数据按特定的模式进行存储而建立的关系型数据库,它不同于多维数据库,数据仓库中的数据是细节的...主题要体现某一方面的各分析角度(维度)和统 计数值型数据(量度),确定主题时要综合考虑,一个主题在数据仓库中即为一个数据集市,数据集市体现了某一方面的信息,多个数据集市构成了数据仓库。...常用的ETL工具:主要有三主流工具,分别是Ascential公司的Datastage、Informatica公司的Powercenter、NCR Teradata公司的ETL Automation.还有其他开源工具...增量数据文件:数据文件的内容为数据表的增量信息,包含表内新增及修改的记录。 全量数据文件:数据文件的内容为数据表的全量信息,包含表内的所有数据

    1.1K20

    数据挖掘与建模

    数据挖掘是基于统计学原理,利用机器学习中的算法工具实现价值信息的发现。机器学习是一种实现人工智能的方法,深度学习是实现机器学习的一种技术。 ?...四经典算法:分类、关联、聚类、回归 一、监督学习(通俗来说就是已知样本类别,即知道当前的样本是哪一类的样本。)...非线性分类经典算法包括K近邻(KNN)、支持向量机(SVM)、决策树(D Tree)、朴素贝叶斯(NB) 2、回归分析:反映事务数据属性在时间上的特征,预测数据间的相关关系,与分类区别在于,分类是预测目标的离散变量...二、无监督学习(事先没有任何训练数据样本,需要直接对数据进行建模,即不提供经验和训练样本,完全靠自己摸索) 1、关联分析:描述数据库中数据之间存在关系的规则。...模型发现:20世纪90年代的美国沃尔玛超市中,管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中。

    81030

    数据建模

    1)定义:在设计数据库时,对现实世界进行分析、抽象、并从中找出内在联系,进而确定数据库的结构,这一过程就称为数据建模。 2)作用: 1. 模型能准确表达设计意图,更易于进行技术交流。 2....3)数据建模步骤: 1.需求分析阶段 2.概念结构设计阶段:CMD 概念结构设计是整个数据库设计的关键。...3.逻辑数据模型:LDM 需要考虑数据的存储结构,是关系的还是面向对象的。对数据进行符合数据库设计范式的规范,但不关心物理数据库。...概念模型是把现实世界中实体和关系抽象到计算机世界,逻辑模型就是一种跟具体数据库无关的数据库模型,而物理模型是对某一款确定的数据库进行设计的数据库模型。...所以在数据库开发当中,先进行概念建模,然后进行逻辑建模,再而才进行物理模型的建模

    58410

    MongoDB的数据建模

    MongoDB是一个基于文档模型的NoSQL数据库,它的数据建模与传统的关系型数据库有很大的不同。在MongoDB中,数据是以文档的形式存储的,文档是一种类似于JSON的数据格式,非常灵活和扩展。...集合中的每个文档都可以有不同的结构,不同于传统数据库中表中的行,它们可以有不同的列和数据类型。...以下是一些关键的设计考虑因素:数据的一致性在MongoDB中,数据的一致性需要通过应用程序来保证。在设计文档模式时,需要确保每个文档都包含完整的数据,以避免应用程序在查询时需要多次访问数据库。...在将数据分布到多个节点时,需要确保数据的相关性。通常可以将数据根据其相关性分组到同一个集合中,这样可以避免在查询时需要访问多个集合。此外,还可以考虑使用分片(sharding)来分散数据负载。...这种设计方式可以减少重复数据,同时也可以提高查询性能和数据一致性。

    84840

    RavenDB数据建模--总结

    只需将数据存储进去并通过键访问数据即可。同时我们还学习了使用过期功能来存储与时间相关的数据。...从键/值存储的简单模型开始,我们开始考虑真实的文档模型,学习了如何构建嵌入值来存储本质上是文档一部分的数据,还研学习了如何对关系和集合、多对一和多对多关联进行建模。...然后,我们介绍了更高级的建模技术,例如如何处理引用和配置数据,以及如何处理时态信息和分层结构。 接下来,我们讨论了建模时必须考虑的一些约束,例如如何处理文档的增长以及RavenDB中文档的良好大小。...我们学习了并发控制以及变化向量如何用于乐观并发和缓存,并且学习了为什么我们应该避免在模型中缓存聚合数据。...然后我们学习了如何处理带有附件的二进制数据,以及使用修订功能进行审计和更改跟踪,并且了解了我们可以在 RavenDB 中如何让文档数据过期。简要介绍了索引和查询时的引用处理。

    43630

    数据仓库建模

    下图是个示例,通过统一数据模型,屏蔽数据源变化对业务的影响,保证业务的稳定,表述了数据仓库模型的一种价值: 二、数据仓库分层的设计 为了实现以上的目的,数据仓库一般要进行分层的设计,其能带来五好处:...三、两种经典的数据仓库建模方法 前面的分层设计中你会发现有两种设计方法,关系建模和维度建模,下面分别简单介绍其特点和适用场景。...1、维度建模 (1)定义 维度模型是数据仓库领域另一位师Ralph Kimball 所倡导的。...这也是我们在使用hive时,经常会看到一些宽表的原因,宽表一般都是事实表,包含了维度关联的主键和一些度量信息,而维度表则是事实表里面维度的具体信息,使用时候一般通过join来组合数据,相对来说对OLAP...四、企业建模的三点经验 维度建模就不说了,只要能理解业务过程和其中涉及的相关数据、维度就可以,但自顶向下的关系建模难度很大,以下是关系建模的三个建设要点。

    1.4K31

    数据仓库专题(7)-维度建模11基本原则

    遵循这些原则进行维度建模可以保证数据粒度合理,模型灵活,能够适应未来的信息资源,违反这些原则你将会把用户弄糊涂,并且会遇到数据仓库障碍。本文适用于多维建模,不使用于3NF建模。...二、正文 原则1、载入详细的原子数据到维度结构中    维度建模应该使用最基础的原子数据进行填充,以支持不可预知的来自用户查询的过滤和分组请求,用户通常不希望每次只看到一个单一的记录,但是你无法预测...用户想要掩盖哪些数据,想要显示哪些数据,如果只有汇总数据,那么你已经设定了数据的使用模式,当用户想要深入挖掘数据时他们就会遇到障碍。...当然,原子数 据也可以通过概要维度建模进行补充,但企业用户无法只在汇总数据上工作,他们需要原始数据回答不断变化的问题。...原则10、不断平衡需求和现实,提供用户可接受的并能够支持他们决策的DW/BI解决方案    维度建模需要不断在用户需求和数据源事实之间进行平衡,才能够提交可执行性好的设计,更重要的是,要符合业务的需要,

    1.8K30
    领券