首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

数据开发:消息队列如何处理重复消息

消息队列是越来越多的实时计算场景下得到应用,而在实时计算场景下,重复消息的情况也是非常常见的,针对于重复消息,如何处理才能保证系统性能稳定,服务可靠?...今天的大数据开发学习分享,我们主要来讲讲消息队列如何处理重复消息?...也就是说,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。 At least once:至少一次。...更加通用的方法是,给数据增加一个版本号属性,每次更新数据前,比较当前数据的版本号是否和消息中的版本号一直,如果不一致就拒绝更新数据,更新数据的同时将版本号+1,一样可以实现幂等更新。...关于大数据开发学习,消息队列如何处理重复消息,以上就为大家做了基本的介绍了。消息队列在使用场景当中,重复消息的出现不可避免,那么做好相应的应对措施也就非常关键了。

2.3K20

数据开发:消息队列如何处理消息积压

实时消息处理,是当前大数据计算领域面临的常见场景需求之一,而消息队列对实时消息流的处理,常常会遇到的问题之一,就是消息积压。今天的大数据开发学习分享,我们就来聊聊,消息队列如何处理消息积压?...一般来说,消息积压的直接原因一定是系统中的某个部分出现了性能问题,来不及处理上游发送的消息,才会导致消息积压。...如果是一个离线系统,它在性能上更注重整个系统的吞吐量,发送端的数据都是来自于数据库,这种情况就更适合批量发送。可以批量从数据库读取数据,然后批量来发送消息,同样用少量的并发就可以获得非常高的吞吐量。...如果是单位事件发送的消息增多,比如说是赶上促或者抢购,短时间内不太可能优化消费端的代码来提升消费性能,唯一的方法是通过扩容消费端的实例来提升总体的消费能力。...关于大数据开发学习,消息队列如何处理消息积压,以上就为大家做了基本的介绍了。消息积压是实时流处理常见的问题之一,掌握常见的解决思路和方案,还是很有必要的。

2.3K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    首次揭秘1112背后的云数据库技术!| Q推荐

    从 2009 年到 2021 年,从千万交易额到千亿交易额, 11 已经开展了 12 年。如今,每年的 11 以及一个月后的 12,已经成为真正意义上的全民购物狂欢节。...是什么样的数据库撑起了 2021 年的 11 12 的稳定进行?...《数据 Cool 谈》第三期,阿里巴巴淘宝技术部 12 队长朱成、阿里巴巴业务平台 11 队长徐培德、阿里巴巴数据 11 队长陈锦赋与 InfoQ 主编王一鹏,一同揭秘了 11 12 背后的数据库技术...在 11 12,这种方式的弊端会被进一步放大。数据显示,在 11 秒杀系统中,秒杀峰值交易数据每秒超过 50 万笔,是一个非常典型的电商秒杀场景。...在水平扩展的集群中,每个节点服务数十个分区,每个分区使用单独线程响应的事务处理模型避免了锁竞争的开销。据悉,在促场景下,Tair 提供了几乎直线般的 P99 访问延时。

    31.8K50

    Flink处理腾讯云数据订阅消息实践

    对于Mysql,可以监听其binlog日志,并输出到消息队列完成订阅,而腾讯云上有各种各样数据库,还有一些自研的数据库,都让用户来自研对接的方式显然成本太高,所以腾讯云推出了数据订阅任务,满足用户实时处理数据数据变更的诉求...因此在处理时需要根据Kafka 中的每条消息消息头中都带有分片信息进行划分处理。...这个分包的逻辑就是为了处理这种单行变更消息很大的场景。...数据订阅任务会将binlog数据先转化为Entries并将其序列化,再对序列化后的数据进行分包处理,因此在消费端,需要将多个分包的消息全部收到,才能解析成Entries处理。..., e); } } } 在数据同步的任务场景中,处理数据源产生的binlog消息是一定要保证顺序的(不一定是全局顺序),例如对同一条数据的2次更新在处理时乱序的话,可能会导致最终更新目标表的结果不正确

    2.6K171

    达观数据应对大规模消息数据处理经验

    达观数据是为企业提供大数据处理、个性化推荐系统服务的知名公司,在应对海量数据处理时,积累了大量实战经验。...其中达观数据在面对大量的数据交互和消息处理时,使用了称为DPIO的设计思路进行快速、稳定、可靠的消息数据传递机制,本文分享了达观数据在应对大规模消息数据处理时所开发的通讯中间件DPIO的设计思路和处理经验...一、数据通讯进程模型 我们在设计达观数据消息数据处理机制时,首先充分借鉴了ZeroMQ和ProxyIO的设计思想。...假设:三个proxy server的属于同一epoll thread,且三个proxy server假设都处理能力无限。...12. api通过解析请求内容,获取请求协议包在共享内存中的偏移和请求协议包的长度。从共享内存中读取请求内容,并释放相应空间。 13. api将请求协议包返回给应用层进行处理。 14.

    1.7K80

    参考消息:2015数据发展十预测公布

    会上发布的《中国大数据技术与产业发展白皮书(2014年)》预测, 2015年我国大数据产业发展将主要有以下十特点。...大数据分析的核心是从数据中获取价值,价值体现在从大数据中获取更准确、更深层次的知识,而非对数据的简单统计分析。...二、数据科学带动多学科融合,但是数据科学作为新兴的学科,其学科基础问题体系尚不明朗,数据科学自身的发展尚未成体系。在大数据时代,随着社会的数字化程度逐步加深,越来越多的学科在数据层面趋于一致。...三、跨学科领域交叉的数据融合分析与应用将成为今后大数据分析应用发展的重大趋势。大数据技术发展的目标是应用落地,因此大数据研究不能仅仅局限于计算技术本身。...五、大数据多样化处理模式与软硬件基础设施逐步夯实,内存计算将继续成为提高大数据处理性能的主要手段。 六、大数据安全会持续令人担忧。 七、新的计算模式取得突破。 八、各种可视化技术和工具提升大数据分析。

    88820

    建议收藏:12个Pandas数据处理高频操作

    大家好,我是老表~今天给大家分享几个自己近期常用的Pandas数据处理技巧,主打实用,所以你肯定能用的着,建议扫一遍,然后收藏起来,下次要用的时候再查查看即可。...拷贝 > 12 对于列/行的操作 简单说说 Panda是一个快速、强大、灵活且易于使用的开源数据分析和操作工具,在Python环境下,我们可以通过pip直接进行安装。...pip install pandas 在Python代码中使用pandas首先需要导入,: import pandas as pd 创建一个示例数据: # 统计一行/一列数据的负数出现的次数 df...进行数据合并前,首先需要确定合并的数据的表头都是一致的,然后将他们依次加入一个列表,最终使用concat函数即可进行数据合并。...> 12 对于列/行的操作 删除指定行/列 # 行索引/列索引 多行/多列可以用列表 # axis=0表示行 axis=1表示列 inplace是否在原列表操作 # 删除df中的c列 df.drop(

    2.7K20

    KEGG数据库的12代谢通路分类

    其实这样的KEGG数据库的12代谢通路数据挖掘文章很多,其中一个佼佼者是复旦大学邵志敏团队三阴性乳腺癌的代谢组学文章,文献标题是:《Metabolic-Pathway-Based Subtyping...12代谢通路以及其分类,首先KEGG官网在:https://www.genome.jp/kegg/pathway.html 进入官网就可以看到12代谢通路分类,列表如下所示: Carbohydrate...通过KEGGREST包来探索KEGG数据库的12代谢通路 正常情况下,大家安装R包应该是都问题不大了。...另外,通过观察KEGG官网 :https://www.genome.jp/kegg/pathway.html 的12代谢通路,可以看到通路的id都是00开头,所以很容易使用下面的代码进行批量查询 :...86个代谢通路的1660个基因,所以我重新认真看了看 KEGG官网 :https://www.genome.jp/kegg/pathway.html 的12代谢通路,发现有一些通路居然是01开头,并不是

    8.6K51

    C波段偏振雷达数据处理和可视化

    关于偏振雷达数据处理和可视化之前在github发过matlab版的程序,以前的推送也专门说过气象数据处理:气象雷达数据II。...之所以想要再次更新是因为Python中有了更好的处理雷达数据的库--PyART,相较于之前发布的matlab程序而言,整体的设计都要好太多,所以就有了加入国内雷达数据到此库的想法。...国内S波段雷达数据读取的API已经添加了,而C波段偏振多普勒雷达数据的读取API一直搁浅,其实整个程序在去年夏天已经完成,但因为存在一些小问题,一放就是差不多一年时间,这两天抽个时间把问题解决了。...c98dfile_archive('NUIST.20140928.070704.AR2') display = pyart.graph.RadarDisplay(radar) fig = plt.figure(figsize=(12...更多的使用方法和PyART提供的示例类似或见上述github链接中关于S波段雷达处理的NoteBook示例。 如有问题欢迎在github提issue,欢迎fork和PR。

    2.9K30

    数据5关键处理技术

    文章转自:真灼社 大数据已经逐渐普及,大数据处理关键技术一般包括:大数据采集、大数据处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。...数据处理就是对采集到的原始数据进行清洗、填补、平滑、合并、规格化以及检查一致性等。这个处理过程可以帮助我们将那些杂乱无章的数据转化为相对单一且便于处理的构型,以达到快速分析处理的目的。...因此要对数据过滤、去噪,从而提取出有效的数据数据清理主要包含遗漏值处理(缺少感兴趣的属性)、噪音数据处理数据中存在着错误、或偏离期望值的数据)、不一致数据处理。...一)大数据面临的存储管理问题 ●存储规模数据的一个显著特征就是数据量大,起始计算量单位至少是PB,甚至会采用更大的单位EB或ZB,导致存储规模相当。...二)我国大数据的存储及处理能力挑战 当前,我国大数据存储、分析和处理的能力还很薄弱,与大数据相关的技术和工具的运用也相当不成熟,大部分企业仍处于IT产业链的低端。

    9.3K30

    MySql基础-笔记12 -重复数据处理、SQL注入、导入导出数据

    1、处理重复数据1.1、防止表中出现重复数据可以在 MySQL 数据表中设置指定的字段为 PRIMARY KEY(主键) 或者 UNIQUE(唯一) 索引来保证数据的唯一性。...图片设置表中字段数据不能重复,可以设置主键模式来设置数据的唯一性, 如果你设置了主键,那么那个键的默认值不能为 NULL,可设置为 NOT NULL图片NSERT IGNORE INTO 与 INSERT...INTO 的区别: INSERT IGNORE:会忽略数据库中已经存在的数据,如果数据库没有数据,就插入新的数据,如果有数据的话就跳过这条数据。...1.3、过滤重复数据读取不重复的数据可以在 SELECT 语句中使用 DISTINCT 关键字来过滤重复数据。...图片1.4、读取不重复数据使用 GROUP BY 来读取数据表中不重复的数据图片1.5、删除重复数据图片也可以在数据表中添加 INDEX(索引) 和 PRIMAY KEY(主键)这种简单的方法来删除表中的重复记录

    1.4K150

    数据库的日志文件处理技巧

    如何分析数据库的日志文件?...在做数据库维护的时候,经常需要使用数据库日志来排查问题,有时候会遇到日志文件比较大,例如一个历史MySQL的slowlog上TB了,或者MongoDB的log上几百G,通常这种情况下,我们有下面几个方法来处理日志...01 日志处理方法 当我们遇到日志文件很大的时候,使用vim打开不可取,打开的时间很慢,而且还有可能打爆服务器内存。...一般是通过下面几种方法来处理: 1、head 或者 tail 命令查看日志首尾信息。...02 总结 文中我们一共分享了3种处理的日志文件的做法: 1、tail 或者 head 命令 这种方式的使用场景有限制,只能查看日志首尾的内容。

    1.1K20

    (四) MdbCluster分布式内存数据库——业务消息处理

    (四) MdbCluster分布式内存数据库——业务消息处理   上篇:(三) MdbCluster分布式内存数据库——节点状态变化及分片调整   离上次更新文章已有快5个月,我还是有点懒。...下面我们继续讨论第二节中提到的最后一个问题:业务消息是如何校验、错误消息如何重定向、超时消息如何处理?   ...我们先回顾下业务消息的大概处理流程:在MdbClient、MdbAgent、MdbRWNode都会保存一份完整的SlotList列表,以标明每个数据分片对应的节点。...MdbClient收到重定向消息时,会进行消息重定向,以继续正常流程。   3. 超时消息如何处理?   首先要讨论一下超时消息是如何产生的。...多分片消息处理   当一个查询为全表扫描或者涉及多个分片的数据操作时,MdbClient会分解这些操作,并将这些操作分别发向对应的分片节点。假设对一个有5个分片节点的库进行一次全表查询。

    23540

    Python入门之数据处理——12种有用的Pandas技巧

    在科学计算库中,我发现Pandas对数据科学操作最为有用。Pandas,加上Scikit-learn提供了数据科学家所需的几乎全部的工具。本文旨在提供在Python中处理数据12种方法。...在继续学习之前,我会建议你阅读一下数据挖掘(data exploration)的代码。为了帮助你更好地理解,我使用了一个数据集来执行这些数据操作和处理。...# 2–Apply函数 Apply是一个常用函数,用于处理数据和创建新变量。在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。...# 12–在一个数据帧的行上进行迭代 这不是一个常用的操作。毕竟你不想卡在这里,是吧?有时你可能需要用for循环迭代所有的行。例如,我们面临的一个常见问题是在Python中对变量的不正确处理。...编者按: 本文的作者提供了许多相关的阅读资料链接,请需要的读者朋友点击文末阅读原文http://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation

    5K50

    vivo商城促销系统架构设计与实践-概览篇

    基于这些痛点问题,我们一期完成促销系统的独立,与商城解耦,搭建出促销系统核心能力: 优惠活动管理 对所有优惠活动抽象出统一的优惠模型和配置管理界面,提供活动编辑、修改、查询及数据统计等功能。...面对新品发布、11为客户等大流量场景,如何满足高并发场景下的高性能要求。 面对来自上游业务方的不可信调用,以及下游依赖方的不可靠服务等复杂系统环境,如何提升系统整体的稳定性,保障系统的高可用。...而使用缓存就需要关注数据一致性问题,redis缓存还好解决,但本地缓存不就好处理了。因此本地缓存的使用要看业务场景,尽量是数据不经常变更且业务上能接受一定不一致的场景。...如活动编辑后的缓存处理、资源预占后的消息同步、拼团状态流转的消息通知等等。...4.2 热点key问题 在促销系统中普遍使用redis缓存进行性能提升,缓存数据很多都是SKU商品维度。在新品发布、特定类型手机促等业务场景下极容易产生热点Key问题。

    10.6K11

    2021年数据Kafka:消息队列和Kafka的基本介绍

    而加入消息队列后,系统可以从消息队列中取数据,相当于消息队列做了一次缓冲。 ?...- 订阅消息系统和一个强大的队列,可以处理大量的数据,并使能够将消息从一个 端点传递到另一个端点,kafka 适合离线和在线消息消费。..., 并使他们一标准的合适提供给多个服务器 3) 流式处理 : 流式的处理框架 (spark, storm , flink) 从主题中读取数据 , 对其进行处理 , 并将处理后的结果数据写入新的主题,...供用户和应用程序使用 , kafka 的强耐久性在流处理的上下文中也非常的有用 版本说明: Kafka版本为2.4.1,是2020年3月12日发布的版本。...来源: https://blog.csdn.net/xiaoweite1/article/details/119272472 “IT咖说”欢迎广大技术人员投稿,投稿邮箱:aliang@itdks.com

    1.1K40

    处理不平衡数据的十Python库

    数据不平衡是机器学习中一个常见的挑战,其中一个类的数量明显超过其他类,这可能导致有偏见的模型和较差的泛化。有各种Python库来帮助有效地处理不平衡数据。...在本文中,我们将介绍用于处理机器学习中不平衡数据的十Python库,并为每个库提供代码片段和解释。...1、imbalanced-learn imbalanced-learn是scikit-learn的扩展,提供了各种重新平衡数据集的技术。它提供过采样、欠采样和组合方法。...imblearn.ensemble import RUSBoostClassifier rusboost = RUSBoostClassifier() rusboost.fit(X, y) 总结 处理不平衡数据对于建立准确的机器学习模型至关重要...根据你的数据集和问题,可以选择最合适的方法来有效地平衡数据

    39720

    2021年数据Kafka(九):kafka消息存储及查询机制原理

    ​​​​​​​ kafka消息存储及查询机制原理 一、Kafka数据存储机制         segment段中有两个核心的文件一个是log,一个是index。...通过下图中的数据,可以看到一个segment段差不多会存储70万条数据。...二、Kafka数据查询机制 需求1: 读取 offset=368776 的message消息数据, 数据集如下 第一步: 确定segment段 第二步: 通过segment file 查找 message...寻找的步骤总结 确定数据所在的segment段, 所以可以推断  368776 这条数据在第二个segment段中 在这个段中, 先去查询 index文件, 从中找到 368776 消息在log文件具体的物理偏移量位置...本文由 Lansonli 原创,首发于 CSDN博客 大数据系列文章会每天更新,停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨

    1.6K10
    领券