消息队列是越来越多的实时计算场景下得到应用,而在实时计算场景下,重复消息的情况也是非常常见的,针对于重复消息,如何处理才能保证系统性能稳定,服务可靠?...今天的大数据开发学习分享,我们主要来讲讲消息队列如何处理重复消息?...也就是说,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。 At least once:至少一次。...更加通用的方法是,给数据增加一个版本号属性,每次更新数据前,比较当前数据的版本号是否和消息中的版本号一直,如果不一致就拒绝更新数据,更新数据的同时将版本号+1,一样可以实现幂等更新。...关于大数据开发学习,消息队列如何处理重复消息,以上就为大家做了基本的介绍了。消息队列在使用场景当中,重复消息的出现不可避免,那么做好相应的应对措施也就非常关键了。
实时消息流处理,是当前大数据计算领域面临的常见场景需求之一,而消息队列对实时消息流的处理,常常会遇到的问题之一,就是消息积压。今天的大数据开发学习分享,我们就来聊聊,消息队列如何处理消息积压?...如果是一个离线系统,它在性能上更注重整个系统的吞吐量,发送端的数据都是来自于数据库,这种情况就更适合批量发送。可以批量从数据库读取数据,然后批量来发送消息,同样用少量的并发就可以获得非常高的吞吐量。...2、消息积压了该如何处理? 还有一种消息积压的情况是,日常系统正常运转的时候,没有积压或者只有少量积压很快就消费掉了,但是某一时刻,突然就开始积压消息并且积压持续上涨。...如果是单位事件发送的消息增多,比如说是赶上大促或者抢购,短时间内不太可能优化消费端的代码来提升消费性能,唯一的方法是通过扩容消费端的实例来提升总体的消费能力。...关于大数据开发学习,消息队列如何处理消息积压,以上就为大家做了基本的介绍了。消息积压是实时流处理常见的问题之一,掌握常见的解决思路和方案,还是很有必要的。
核心点有很多,为了更贴合实际场景,我从常见的面试问题入手: 如何保证消息不丢失? 如何处理重复消息? 如何保证消息的有序性? 如何处理消息堆积?...是的,通过多队列全量存储相同的消息,即数据的冗余可以实现一条消息被多个消费者消费。...如何处理重复消息 我们先来看看能不能避免消息的重复。 假设我们发送消息,就管发,不管Broker的响应,那么我们发往Broker是不会重复的。...如何处理消息堆积 消息的堆积往往是因为生产者的生产速度与消费者的消费速度不匹配。有可能是因为消息消费失败反复重试造成的,也有可能就是消费者消费能力弱,渐渐地消息就积压了。...因此我们需要先定位消费慢的原因,如果是bug则处理 bug ,如果是因为本身消费能力较弱,我们可以优化下消费逻辑,比如之前是一条一条消息消费处理的,这次我们批量处理,比如数据库的插入,一条一条插和批量插效率是不一样的
默认情况下,Kafka topic 中每条消息的默认限制为 1MB。这是因为在 Kafka 中,非常大的消息被认为是低效和反模式的。然而,有时候你可能需要往 Kafka 中发送大消息。...在本文中我们将研究在 Kafka 中处理大消息的两种方法。 选项 1:使用外部存储 将大消息(例如视频文件)发送到外部存储,在 Kafka 中只保存这些文件的引用,例如文件的 URL。...选项 2:修改 Kafka 消息大小限制(适用于大于 1MB 小于 10 MB 的消息) 这里我们需要修改 broker, consumer, producer 3 个部分的配置,以允许处理更大的消息。...,但这还不够,我们还需要设置 replica.fetch.max.bytes=10485880(默认也是 1MB),以便大消息可以正常复制到 broker 的副本中。...如果没有修改 replica.fetch.max.bytes 参数,当往 leader replica 写入大消息时,follower replica 会因为无法复制该消息产生如下报错。
RabbitMQ消息堆积问题可以通过以下几种方法处理: 增加消费者数量:当生产消息的速度长时间远大于消费的速度时,可以通过水平扩展,增加消费者的数量来提高处理能力。...优化消费者性能:提高消费者处理消息的效率,例如优化代码、增加资源等。同时,可以调整消费者的预取数量(prefetch count),以避免一次处理过多消息而导致处理缓慢。...消息分片:对于大型消息,可以将其分割成小的消息片段,以加快处理速度。 优化业务逻辑:简化消费者中的业务逻辑,减少处理每个消息所需的时间。确保消息在消费者之间公平分配,避免个别消费者过载。...使用死信队列(Dead Letter Queue, DLQ):对于无法立即处理或处理失败的消息,可以配置死信交换器和队列。...当消息达到一定重试次数或者超过一定期限未被成功ACK时,消息将被转发到死信队列中,后续可以单独处理这部分消息,避免阻塞正常的消息流。
用MQ时,要注意消息数据: 不能多,牵涉重复消费处理和幂等性问题 不能少,消息不能搞丢呀 若这是用MQ传递非常核心的消息,如计费系统,就是很重的业务,操作很耗时,设计上经常将计费做成异步化,就是用MQ。...然而可能刚消费到消息,还没处理,Con进程挂了,重启后,RabbitMQ认为你都消费了,这数据就丢了。...2 Kafka 消费端丢数据 唯一可能导致Con丢数据case:消费到了该消息,然后Con自动提交了offset,让kafka以为你已消费完该消息,然而其实你刚准备处理这消息,你还没处理完,你就挂了,...4 总结 本文分别从生产者、MQ 自身、消费者介绍了导致消息丢失的原因,消息丢失问题是一个比较常见但又必须解决的问题。 不同的 MQ 如何解决消息丢失问题的。...消费端导致的消息丢失都是由于数据还未处理成功确提前通知 MQ 消息已经处理成功了,禁止自动提交或异步操作即可,处理起来比较简单;生产者和 MQ 自身导致的消息丢失则比较难处理,RabbitMQ 使用了
接下来的内容转载自 Android应用程序消息处理机制 ,对于MessageQueue讲的非常简单明了。...Android消息处理机制概述 Android的消息处理机制主要分为四个部分: 创建消息队列 消息循环 消息发送 消息处理 主要涉及三个类: MessageQueue Looper Handler 创建消息队列...利用epoll的机制,可以做到当管道没有消息时,线程睡眠在读端的fd上,当其他线程往管道写数据时,本线程便会被唤醒以进行消息处理。...nativePollOnce方法内部利用epoll机制在之前建立的管道上等待数据写入。接收到数据后马上读取并返回结果。...说明该消息不需要马上处理,不需要由这个消息来唤醒队列。 如果插在队列头部(或者when=0),则表明要马上处理这个消息。如果当前队列正在堵塞,则需要唤醒它进行处理。
如果rabbitmq没能处理这个消息,会回调你一个nack接口,告诉你这个消息接收失败,你可以重试。...即让消息写入之后持久化到磁盘,哪怕是rabbitmq自己挂了,恢复之后会自动读取之前存储的数据,一般数据不会丢。...三 消费端弄丢了数据 rabbitmq如果丢失了数据,主要是因为我们默认使用的是autoack,表示当消费者一收到消息就表示消费者收到了消息,消费者收到了消息就会立即从队列中删除。...但是可能消息消费的时候,刚消费(取得数据)就发送了ack,还没处理,结果进程挂了,比如重启了,rabbitmq认为你都消费了,这数据就丢了。...这样的话,如果你还没处理完,不就没有ack?那rabbitmq就认为你还没处理完,这个时候rabbitmq会把这个消费分配给别的consumer去处理,消息是不会丢的。 消息确认Ack具体思考和实现
接收者接收到 QoS 为 1 的消息时应该回应 PUBACK 报文,接收者可能会多次接受同一个消息,无论 DUP 标志如何,接收者都会将收到的消息当作一个新的消息并发送 PUBACK 报文应答。...消息不能丢失,但能接受并处理重复的消息。 QoS 2 不能忍受消息丢失(消息的丢失会造成生命或财产的损失),且不希望收到重复的消息。 数据完整性与及时性要求较高的银行、消防、航空等行业。...这种坏消息一般不是因为网络原因或消费者宕机导致,大多都是因为消息数据本身有问题,消费者的业务逻辑无法处理。...“如果账户 X 当前的余额为 500 元,将余额加 100 元"和“检查消息执行状态,发现消息未处理过,开始执行账户增加 100”,这两者有啥区别,不都是消费端compareAndUpdate吗,都可以用普通数据库事务就能实现...主要是检查的内容不一样: 前者检查余额,容易实现,但适用范围比较窄 后者检查消息执行状态,难实现,但适用范围更广泛 如何解决方案一和方案二日益增多的存储日志呀,有合适的删除策略吗?
问题 如何保证消息的可靠性传输?或者说,如何处理消息丢失的问题? 分析 这个是肯定的,用 MQ 有个基本原则,就是数据不能多一条,也不能少一条,不能多,就是前面说的重复消费和幂等性问题。...这样的话,如果你还没处理完,不就没有 ack 了?那 RabbitMQ 就认为你还没处理完,这个时候 RabbitMQ 会把这个消费分配给别的 consumer 去处理,消息是不会丢的。...Kafka 消费端弄丢了数据 唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息...,你还没处理,你自己就挂了,此时这条消息就丢咯。...然后此时我们重启了系统,就会导致内存 queue 里还没来得及处理的数据就丢失了。
如今,使用大GB的数据集并不罕见,特别是从头开始预训练像BERT或GPT-2这样的Tranformer模型。在这样的情况下,甚至连加载数据都可能是一个挑战。...那么HuggingFace数据集是如何解决这个内存管理问题的呢?...在底层,这些功能都是由 Apache Arrow 内存格式和 pyarrow 库实现的,这使得数据加载和处理速度快如闪电。...可以使用IterableDataset.map()即时处理流数据集中的元素,如果你需要对输入进行标记,这在训练期间非常有用。...总结 总结来看,主要是通过内存映射与流处理来实现的大数据集加载,这也是业界比较常用的方案。
因此在处理时需要根据Kafka 中的每条消息的消息头中都带有分片信息进行划分处理。...这个分包的逻辑就是为了处理这种单行变更消息很大的场景。...数据订阅任务会将binlog数据先转化为Entries并将其序列化,再对序列化后的数据进行分包处理,因此在消费端,需要将多个分包的消息全部收到,才能解析成Entries处理。...[图二 TDSQL产生的分包数据示例] 三、Flink消费任务实现及并发优化 前面介绍了数据订阅任务的生产模型,本节介绍如何用Flink实现消费逻辑。..., e); } } } 在数据同步的任务场景中,处理数据源产生的binlog消息是一定要保证顺序的(不一定是全局顺序),例如对同一条数据的2次更新在处理时乱序的话,可能会导致最终更新目标表的结果不正确
达观数据是为企业提供大数据处理、个性化推荐系统服务的知名公司,在应对海量数据处理时,积累了大量实战经验。...其中达观数据在面对大量的数据交互和消息处理时,使用了称为DPIO的设计思路进行快速、稳定、可靠的消息数据传递机制,本文分享了达观数据在应对大规模消息数据处理时所开发的通讯中间件DPIO的设计思路和处理经验...一、数据通讯进程模型 我们在设计达观数据的消息数据处理机制时,首先充分借鉴了ZeroMQ和ProxyIO的设计思想。...假设:三个proxy server的属于同一epoll thread,且三个proxy server假设都处理能力无限大。...十、 全文总结 达观数据在处理大规模数据方面有多年的技术积累,DPIO是达观在处理大数据通讯时的一些经验,和感兴趣的朋友们分享。未来达观数据将不断分享更多的技术经验,与大家交流与合作。
默认情况下,当生产者发出一条消息到绑定通道上,这条消息会产生多个副本被每个消费者实例接收和处理(出现上述重复消费问题)。...但是有些业务场景之下,我们希望生产者产生的消息只被其中一个实例消费,这个时候我们需要为这些消费者设置消费组来实现这样的功能。 下面,通过一个例子来看看如何使用消费组。...String NAME = "example-topic"; @Input(NAME) SubscribableChannel input(); } 第二步:对上述输入通道创建监听与处理逻辑...构建消息生产端 比较简单,需要注意的是,使用@Output创建一个同名的输出绑定,这样发出的消息才能被上述启动的实例接收到。...消息重复消费的问题成功重现! 使用消费组解决问题 如何解决上述消息重复消费的问题呢?
答:改成异步可以提前告知用户结果,然后在后台通过补偿机制不断的重试,让数据达成最终一致性,这种方式对用户体验可能确实要好一些。异步处理又分为:开启线程 和 使用mq。...线程处理有比较致命的弊端,如果服务器重启,线程里的数据会丢失。 接下来,我们的重点放在mq上。 ?...对于问题1,如果余额宝处理失败了,比如像rocketmq这类消息处理框架会把消息放入重试队列重试16次,不需要业务代码做额外的工作。...那么还有个问题: 余额宝这边处理成功,但是由于调用 支付宝消息确认api失败,导致支付宝的job重新发送消息,余额宝重复消费了。这个就是所谓的重复消息。 重复消费要如何解决呢? ?...余额宝也增加一个本地消息表,记录业务处理成功的消息。当然余额宝的账号操作和本地消息表也要在同一个事务中。
消息队列在大数据技术生态当中,一直都是值得重视的存在,开源的消息队列产品,市面上也不少,基于不同的场景,需要去匹配不同的解决方案。...围绕消息队列,今天的大数据开发学习分享,我们主要来聊聊,消息队列如何确保消息不丢失。 1、检测消息丢失的方法 可以利用消息队列的有序性来验证是否有消息丢失。...在编写发送消息代码时,需要注意,正确处理返回值或者捕获异常,就可以保证这个阶段的消息不会丢失。...,需要在处理完全部消费业务逻辑之后,再发送消费确认。...关于大数据开发学习,消息队列如何确保消息不丢失,以上就为大家做了基本的介绍了。在现有的大数据生态体系当中,消息队列的开源产品很多,对于主流青睐的产品,也需要大家有相应的了解。
但是系统A不关注系统B到底怎么处理或者有没有处理好,所以系统A把消息发送给MQ,然后就不管这条消息的“死活”了,接着系统B从MQ里消费出来处理即可。...两个字:解耦 系统A要跟系统B通信,但是他不需要关注系统B如何处理的一些细节。我们来举几个例子说明: 比如,A不需要关注B什么时候处理完,这样假如系统B处理一个消息要耗费10分钟也不关系统A的事儿。...否则系统A直接调用系统B的接口,万一系统B挂了,难道系统A还要把消息暂存到数据库?等待系统B恢复了再给他发过去吗?...之所以我们这篇文章抛出一个面试题,结果先长篇大论说一个生产实践案例和业务场景,就是因为面试被问到这个问题时,必须要结合你自己的业务实践经验来说。...一旦标志这条消息处理失败了之后,MQ就会把这条消息转入提前设置好的一个死信队列中。 然后你会看到的就是,在第三方物流系统故障期间,所有订单消息全部处理失败,全部会转入死信队列。
然而,消息传递过程中不可避免会遇到失败情况,如何处理MQ的重试失败和数据异常,是每个Java高级开发者必须面对的问题。本文将从设计和架构的角度出发,结合实际代码示例,深入探讨如何优雅地处理这些挑战。...} 数据异常处理策略 当MQ重试依然失败时,我们需要有一套策略来处理这些异常数据。...消息追踪与监控 为了更好地处理MQ中的数据异常和重试失败,消息追踪和监控是不可或缺的。通过实时监控消息队列的状态,可以快速响应可能出现的问题。...监控工具的使用 可以使用Prometheus、Grafana等工具来搭建监控系统,实时查看上述指标。...我们如何设计这个系统的消息处理逻辑呢? 消息生产者 当订单支付成功时,生产者将消息发送到MQ。
腾讯面试:Kafka如何处理百万级消息队列?在今天的大数据时代,处理海量数据已成为各行各业的标配。...但当面对真正的百万级甚至更高量级的消息处理时,如何有效地利用 Kafka,确保数据的快速、准确传输,成为了许多开发者和架构师思考的问题。...本文将深入探讨 Kafka 的高级应用,通过10个实用技巧,帮助你掌握处理百万级消息队列的艺术。引言在一个秒杀系统中,瞬时的流量可能达到百万级别,这对数据处理系统提出了极高的要求。...Kafka 作为消息队列的佼佼者,能够胜任这一挑战,但如何发挥其最大效能,是我们需要深入探讨的。...你可以使用 Kafka Streams 来处理数据流。
领取专属 10元无门槛券
手把手带您无忧上云