首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    达观数据应对大规模消息数据的处理经验

    达观数据是为企业提供大数据处理、个性化推荐系统服务的知名公司,在应对海量数据处理时,积累了大量实战经验。...其中达观数据在面对大量的数据交互和消息处理时,使用了称为DPIO的设计思路进行快速、稳定、可靠的消息数据传递机制,本文分享了达观数据在应对大规模消息数据处理时所开发的通讯中间件DPIO的设计思路和处理经验...一、数据通讯进程模型 我们在设计达观数据的消息数据处理机制时,首先充分借鉴了ZeroMQ和ProxyIO的设计思想。...,每个管理节点都有一个web服务为监控节点提供服务节点的状态数据。...十、 全文总结 达观数据在处理大规模数据方面有多年的技术积累,DPIO是达观在处理大数据通讯时的一些经验,和感兴趣的朋友们分享。未来达观数据将不断分享更多的技术经验,与大家交流与合作。

    1.7K80

    使用 NoSQL 数据库分析大规模数据

    本学习路线图向 Java 开发人员介绍了 NoSQL 技术,以及 Apache Hadoop MapReduce 技术在处理大规模数据方面的优势。 1....NoSQL 入门 NoSQL 数据库被更多的人所关注是因为它在解决大规模数据的可扩展性上有它独到的解决方案。...使用 MapReduce 分析分布式数据 大规模数据解决方案中的一项重要技术就是 MapReduce,它是一个由 Google 提出的用于处理大规模、分布式数据集的编程模型以及实现。...在这里了解 Apache Hadoop,一个 MapReduce 的开源实现,它在 IBM 的大规模数据解决方案中起到了重要的作用。...阅读: 用 Hadoop MapReduce 进行大规模数据分析 阅读: 用 MapReduce 解决与云计算相关的 Big Data 问题 阅读: 使用 Apache Hadoop 挖掘现有数据 下载

    1K60

    DGraph: 大规模动态图数据集

    近日,浙江大学杨洋老师科研小组(yangy.org)和信也科技联合发布大规模动态图数据集 DGraph,旨在服务图神经网络、图挖掘、社交网络、异常检测等方向的研究人员,为之提供真实场景的大规模数据。...http://yangy.org/works/dgraph/dgraph_2022.pdf 01 数据集描述 DGraph 的源数据由信也科技提供。...2.3 规模庞大 DGraph 包含 370 万名经过脱敏处理的真实金融借贷用户和 430 万条动态关系,其规模约为金融领域当前最大的动态图数据 Elliptic 的 17 倍,支持大规模图模型的研究与评估...合理处理背景节点可以在大规模数据场景下有效提升数据的存储空间和模型的运行效率。DGraph 中包含超过 200 万个背景节点,可以支持研究者深入探索背景节点的性质。...欢迎感兴趣的同仁光顾 DGraph 公开数据网站,一起致力为人工智能领域提供丰富的应用数据,携手共建开放的数字生态。

    74760

    大规模数据管理的路径

    您需要数据治理功能来实施角色、流程、策略、程序和标准,以管理最关键的数据;需要主数据和数据质量管理功能来确保一致性和信任;需要元数据来跟踪沿袭、捕获业务上下文以及链接到物理数据;需要集成和分析服务来构建数据产品并将数据转化为价值...这个设计的目的是为了创建一个基础,以便在规模上构建数据产品,支持计算数据治理的数据所有权和自助服务目标。首先,领域团队、产品所有者和数据工程师紧密合作,使数据可用。...您还应该知道哪些潜在的新数据产品可以服务哪些新用例。在此阶段,您将制定预算计划、路线图、业务附加值和运营模式。逐渐扩大规模时,这些活动很重要。...要解决此问题,请从其他环境中提取或一次性复制历史数据。例如,如果数据仓库保留了过去七年的数据,您可以使用该数据构建遗留数据产品,然后将该遗留数据产品与输入到新架构中的传入数据相结合。...该框架可能包括指向业务语义以及数据质量和服务级别协议的指针。 当进一步扩大规模时,明确数据治理结构非常重要。因此,需要摆脱定义不明确的数据角色,转向具有协调一致的流程的清晰结构。

    24840

    flashtext:大规模文本数据清洗利器

    做 文本分析 【文本数据挖掘快速入门】时候经常遇到同意多形词,如 BigApple/NewYork/NN 都可能代指纽约市,当我们统计纽约市出现的次数的时候我们需要分别统计这三个词的数目并进行加总。...清洗数据的速度,我们可以拿正则表达式来和flashtext作比较 ? 我们发现运行正则表达式来清洗数据,速度会随着数据量线性下降,而flashtext的清洗性能基本保持不变。...Area.') keywords_found Run ['Big Apple', 'Bay Area'] 3.2 同义词指代,抽取关键词 像big apple 和new york都代指纽约,我们需要先清洗好数据...给关键词处理器对象中加入待识别的关键词 kw_processor.add_keyword('Big Apple', 'New York') kw_processor.add_keyword('Bay Area') #对文本数据进行关键词提取...add_keyword('New Delhi', 'NCR region') kw_processor2.add_keyword('Big Apple','New York') # 注意顺序#对文本数据进行关键词替换

    2.3K30

    超大规模数据中心网络

    4、需要大数据计算和存储能力的应用: 典型代表:搜索服务。 特征:经济性、灵活性、共享性、可靠性、可扩展性。 三、云计算数据中心网络需求 图 3 云计算数据中心网络 云计算的主要载体是数据中心。...数据中心云化对网络提出了新需求: 1、超大规模,平滑扩展:支持数万甚至更高量级的服务器接入。 2、虚机动态迁移:虚机可在不同物理机之间漂移。...图 12 粗放型Heatsink网络 粗放型网络Spine在Group内相连,以提升网络接入规模,适用于超大规模数据中心网络。...图 13 集约型Heatsink网络 集约型网络Spine在Group外相连,以提升网络设备利用率,适用于小、中、大规模数据中心网络。...本文是作者团队面向公、私有云构建数据中心网络的相关研究与实践,主要特点有超大规模网络、白盒交换设备、虚拟与物理网络设备统一管理等,Overlay网络解决方案的本质在于将传统数据中心网络SDN化,无可否认

    1.7K60

    hbase大规模数据写入的优化历程

    业务背景:由于需要将ngix日志过滤出来的1亿+条用户行为记录存入Hbase数据库,以此根据一定的条件来提供近实时查询,比如根据用户id及一定的时间段等条件来过滤符合要求的若干行为记录,满足这一场景的技术包括...step 2 hbase预分区/优化hbase配置: 考虑在建表的时候没有进行预分区,因此写入的时候会存在热点写的问题,同时数据持续增长,需要不断的对region进行split,实际上这一步相当消耗资源...好在上一步骤中写入的数据不多,因此直接删除表和数据后重新建表并预分区: create 'user_actions', {NAME =>'info', VERSIONS=>3},{SPLITS =>['...step 3 批量写入hbase: 上述问题的根源在于高频提交小数据,导致Hbase疲于创建线程并进行资源的回收,最终甚至会出现宕机。...(3)尽量使用批量写入的方法,同样的道理,读取的时候,使用批量读的方法 (4)网络IO/磁盘IO 原创文章,转载请注明: 转载自data mining club 本文链接地址: hbase大规模数据写入的优化历程

    2.2K60

    Phenotype : 大规模表型数据处理工具

    表型数据的处理,一直是困扰许多同学的问题。面对大规模的表型数据,如果不会编程,纯用Excel的话,往往会消耗大量精力。...为了解决大规模表型数据难以处理的问题,小编开发了R包"Phenotype",用于剔除表型中的异常值、计算统计指标和遗传力、绘制直方图和进行BLUP分析。...outlier:利用boxplot剔除数据中的异常值 在之前的推送中,小编教过大家使用boxplot剔除异常值(利用箱线图巧剔异常值)。...图中右上角的P值是Shapiro-Wilk normality test结果,P值小于0.05代表数据不符合正态分布。...blup:计算多年多点表型数据的BLUP值 最佳线性无偏预测(Best Linear Unbiased Prediction,简称BLUP)可以对多环境数据进行整合,去除环境效应,得到个体稳定遗传的表型

    1.4K30

    Spark-大规模数据处理计算引擎

    Spark SQL 支持多种数据源,比 如 Hive 表、Parquet 以及 JSON 等。 Spark Streaming: 是 Spark 提供的对实时数据进行流式计算的组件。...当前百度的Spark已应用于凤巢、大搜索、直达号、百度大数据等业务;阿里利用GraphX构建了大规模的图计算和图挖掘系统,实现了很多生产系统的推荐算法;腾讯Spark集群达到8000台的规模,是当前已知的世界上最大的...四、 Spark适用场景 我们大致把Spark的用例分为两类:数据科学应用和数据处理应用。也就对应的有两种人群:数据科学家和工程师。...1、数据科学任务 主要是数据分析领域,数据科学家要负责分析数据并建模,具备 SQL、统计、预测建模(机器学习)等方面的经验,以及一定的使用 Python、 Matlab 或 R 语言进行编程的能力。...2、数据处理应用 工程师定义为使用 Spark 开发 生产环境中的数据处理应用的软件开发者,通过对接Spark的API实现对处理的处理和转换等任务。

    67920

    使用Hadoop MapReduce进行大规模数据爬取

    为什么选择Hadoop MapReduce进行数据爬取大规模数据处理能力:Hadoop MapReduce能够处理PB级别的数据,适合大规模数据爬取。...灵活性:MapReduce模型允许开发者自定义Map和Reduce函数,以适应不同的数据处理需求。实现大规模数据爬取的步骤1....定义爬取任务确定你要爬取的数据类型和来源。例如,你可能需要爬取特定领域的新闻网站或者社交媒体上的数据。3....常见问题与解决方案1数据倾斜:在大规模数据爬取中,可能会遇到数据倾斜问题,导致某些节点负载过高。可以通过优化Map和Reduce函数,或者使用Hadoop的分区技术来解决。...结论使用Hadoop MapReduce进行大规模数据爬取是一种高效的方法。它不仅可以处理海量数据,而且具有良好的扩展性和容错性。

    12410

    使用Hadoop MapReduce进行大规模数据爬取

    为什么选择Hadoop MapReduce进行数据爬取 大规模数据处理能力:Hadoop MapReduce能够处理PB级别的数据,适合大规模数据爬取。...灵活性:MapReduce模型允许开发者自定义Map和Reduce函数,以适应不同的数据处理需求。 实现大规模数据爬取的步骤 1....定义爬取任务 确定你要爬取的数据类型和来源。例如,你可能需要爬取特定领域的新闻网站或者社交媒体上的数据。 3....常见问题与解决方案 数据倾斜:在大规模数据爬取中,可能会遇到数据倾斜问题,导致某些节点负载过高。可以通过优化Map和Reduce函数,或者使用Hadoop的分区技术来解决。...结论 使用Hadoop MapReduce进行大规模数据爬取是一种高效的方法。它不仅可以处理海量数据,而且具有良好的扩展性和容错性。

    11310

    HBase在大规模数据集中的应用经验

    HBase在大规模数据集中的应用场景 HBase在处理大规模数据集时,适合应用于以下场景: 应用场景 详细说明...HBase的数据模型设计 HBase的数据模型与传统的关系型数据库不同,其设计更加灵活,基于列族的存储方式能够高效存储半结构化或非结构化数据。在大规模数据集的应用中,合理设计数据模型尤为重要。...HBase的大规模数据写入优化 在大规模数据集应用中,写入性能直接影响系统的整体效率。为了提高HBase的写入性能,可以从以下几个方面进行优化。...这种方式可以有效提高写入效率,特别是在处理大规模数据时。 HBase的大规模数据读取优化 在大规模数据集的应用场景中,读取性能同样至关重要。...这种方式可以在大规模数据集的查询中有效提升性能,减少数据传输的负担。

    22000

    使用hadoop进行大规模数据的全局排序

    各map任务读入切分后的大规模数据进行处理并将数据作为一系列key:value对输出,输出的中间数据按照定义的方式通过shuffle程序分发到相应的reduce任务。...MapReduce计算框架适用于超大规模的数据(100TB量级)且各数据之间相关性较低的情况。...2.1应用hadoop进行大规模数据全局排序的方法 使用hadoop进行大量的数据排序排序最直观的方法是把文件所有内容给map之后,map不做任何处理,直接输出给一个reduce,利用hadoop的自己的...由此我们可以归纳出这样一个用hadoop对大量数据排序的步骤: 1)对待排序数据进行抽样; 2)对抽样数据进行排序,产生标尺; 3)Map对输入的每条数据计算其处于哪两个标尺之间;将数据发给对应区间ID...各种可以隔离数据集之间相关性的运算模型都能够在Hadoop上被良好应用。之后会有更多的利用Hadoop实现的大规模数据基础计算方法的介绍。

    1.6K50

    详解大规模数据处理利器 BloomFilter 算法

    稍微想想,就会有如下几种方案: 1、将访问过的URL保存到数据库。 2、用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。...3、URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。 4、Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。...以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。 方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。...而且每来一个URL就启动一次数据库查询是不是太小题大做了? 方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。...还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

    78170

    如何使用Colly库进行大规模数据抓取?

    在互联网时代,数据的价值日益凸显,大规模数据抓取成为获取信息的重要手段。Go语言因其高效的并发处理能力,成为编写大规模爬虫的首选语言。...Colly库作为Go语言中一个轻量级且功能强大的爬虫框架,能够满足大规模数据抓取的需求。本文将详细介绍如何使用Colly库进行大规模数据抓取,并提供实现代码。...它支持异步处理,能够同时处理多个请求,从而显著提高数据抓取的效率。Colly提供了丰富的API,可以轻松地实现各种复杂的抓取任务。大规模数据抓取策略1....并发控制大规模数据抓取时,合理控制并发数是提高效率的关键。Colly支持通过并发来提高抓取效率。...分布式爬取对于大规模数据抓取,分布式爬虫可以有效地分配任务和负载。Colly可以通过多个实例分布在不同的服务器上来实现分布式爬取。7.

    14810
    领券