首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R中重复值、缺失值及空格值的处理

1、R中重复值的处理 unique函数作用:把数据结构中,行相同的数据去除。...<- unique(data) 重复值处理函数:unique,用于清洗数据中的重复值。...2、R中缺失值的处理 缺失值的产生 ①有些信息暂时无法获取 ②有些信息被遗漏或者错误处理了 缺失值的处理方式 ①数据补齐(例如用平均值填充) ②删除对应缺失值(如果数据量少的时候慎用) ③不处理 na.omit...函数作用:去除数据结构中值为NA的数据 #缺失数据清洗 #读取数据 data <- read.csv('1.csv', fileEncoding = "UTF-8"); #清洗空数据 new_data...<- na.omit(data) 3、R中空格值的处理 trim函数的作用:用于清除字符型数据前后的空格。

8.2K100

数据分析|R-缺失值处理

数据中往往会有各种缺失值,异常值,错误值等,今天先介绍一下如何处理缺失值,才能更好的数据分析,更准确高效的建模。...一 查看数据集的缺失情况 R中使用NA代表缺失值,用is.na识别缺失值,返回值为TRUE或FALSE。...载入R包及内置数据集 library(VIM) #VIM包的sleep数据集示例 data(sleep,package="VIM") 1)查看数据集整体有多少缺失值及百分比 sum(is.na(sleep...左侧第一列,’42’代表有42条数据无缺失值,第一个’9’代表9条数据Dream和NonD同时缺失。最后一行返回的就是每一个变量(列)对应的缺失数目,38为一共有多少缺失值。下图同样的意思。 ?...三 处理缺失值 当充分了解了缺失值的情况后,可以根据数据量的大小,以及某一列是否为重要的预测作用变量,对数据集中的NA行和某些NA列进行处理。

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言缺失值探索的强大R包:naniar

    简介 缺失值在数据中无处不在,需要在分析的初始阶段仔细探索和处理。在本次示例中,会详细介绍naniar包探索缺失值的方法和理念,它和ggplot2和tidy系列使用方法非常相似,上手并不困难。...本次学习主要探讨3个问题: 开始探索缺失值 探索缺失值的机制 模型化缺失值 如何开始探索缺失值 当你面对新的数据时,可能首先会使用各种汇总函数查看数据的基本情况,比如: summary() str()...但是当数据有缺失值时,就会影响接下来的分析。所以首先还要查看数据的缺失情况。...以下结果说明:有111行没有缺失值,占数据的72%,有40行只有1个缺失值,占数据的26%,有2行含2个缺失值,只占1%。...14.3 56 5 5 0.3333333 ## 6 28 NA 14.9 66 5 6 0.1666667 然后我们可以使用决策树之类的模型来预测哪些变量及其值对于预测缺失比例是重要的

    1.4K40

    pandas中的缺失值处理

    在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....缺失值的判断 为了针对缺失值进行操作,常常需要先判断是否有缺失值的存在,通过isna和notna两个函数可以快速判断,用法如下 >>> a = pd.Series([1, 2, None, 3]) >>...缺失值的删除 通过dropna方法来快速删除NaN值,用法如下 >>> a.dropna() 0 1.0 1 2.0 dtype: float64 # dropna操作数据框时,可以设置axis参数的值...同时,通过简单上述几种简单的缺失值函数,可以方便地对缺失值进行相关操作。

    2.6K10

    基础知识 | R语言数据管理之缺失值

    R语言数据管理之缺失值 在做任何数据分析的第一步,是根据个人需求创建数据集,存储数据的结构是多样的,包括向量,矩阵、数据框、因子以及列表等。...最近在处理一波量大的数据,在运行程序的过程中,因为前期数据处理错误却出现各种bug,经过检查数据集发现是数据管理的问题,为了巩固R语言的基本数据管理,特地重新基础知识。...04 编码某些数值为缺失值 编码某些数值为缺失值是很有必要的,在数据处理的过程中,能够通过na.omit()函数删除某个值所在的行。...的data_province2就是通过给data_province1中的Hubei赋值为缺失值,而后用na.rm()移除缺失值所得。...,学R的初心就是为了绘制实验过程产生的数据图,然而随着深度学习,会发现,R语言的数据分析也很重要,常常会在绘制图形的过程中,因为数据框中存在格式不统一,字符或者缺失值等原因导致绘图失败。

    63050

    (数据科学学习手札58)在R中处理有缺失值数据的高级方法

    一、简介   在实际工作中,遇到数据中带有缺失值是非常常见的现象,简单粗暴的做法如直接删除包含缺失值的记录、删除缺失值比例过大的变量、用0填充缺失值等,但这些做法会很大程度上影响原始数据的分布或者浪费来之不易的数据信息...中的matshow,VIM包中的matrixplot将数据框或矩阵中数据的缺失及数值分布以色彩的形式展现出来,下面是利用matrixplot对R中自带的airquality数据集进行可视化的效果: rm...红色部分即代表数据缺失值所在位置,通过这个方法,可以在最开始对数据整体的缺失情况有一个初步认识,如通过上图可以一眼看出变量Ozone缺失情况较为严重;   2、marginplot与marginmatrix...如上图所示,通过marginplot传入二维数据框,这里选择airquality中包含缺失值的前两列变量,其中左侧对应变量Solar.R的红色箱线图代表与Ozone缺失值对应的Solar.R未缺失数据的分布情况...: 因为mice中绝大部分方法是用拟合的方式以含缺失值变量之外的其他变量为自变量,缺失值为因变量构建回归或分类模型,以达到预测插补的目的,而参数predictorMatrix则用于控制在对每一个含缺失值变量的插补过程中作为自变量的有哪些其他变量

    3.1K40

    R语言中的特殊值及缺失值NA的处理方法

    R语言中存在一些null-able values,当我们进行数据分析时,理解这些值是非常重要的。...通常来说,R语言中存在: NA NULL NaN Inf/-Inf 这四种数据类型在R中都有相应的函数用以判断。 NA NA即Not available,是一个长度为1的逻辑常数,通常代表缺失值。...drop_na(df,X1) # 去除X1列的NA 2 填充法 用其他数值填充数据框中的缺失值NA。...3 虚拟变量法 当分类自变量出现NA时,把缺失值单独作为新的一类。 在性别中,只有男和女两类,虚拟变量的话以女性为0,男性为1。如果出现了缺失值,可以把缺失值赋值为2,单独作为一类。...4 回归填补法 假定有身高和体重两个变量,要填补体重的缺失值,我们可以把体重作为因变量,建立体重对身高的回归方程,然后根据身高的非缺失值,预测体重的缺失值。

    3.3K20

    R 数据整理(三:缺失值NA 的处理方法汇总)

    > is.na(c(1,2,3,NA,'sdas')) [1] FALSE FALSE FALSE TRUE FALSE # 我们可以直接用which 获取TRUE 所在的index 但是,这个函数并不能很好的使用在数据框中...,比如我们想要获得缺失值所在行呢?...其会返回一个矩阵,对应的缺失值会在对应位置返回一个TRUE,如果这时候通过which 获取,其只会返回一个坐标,这是因为数据框经过is.na 后返回一个矩阵,而矩阵的坐标关系和向量又非常的微妙,其本质也就是向量的不同的排列...我们都知道,布尔值实际就是0和1,我们可以利用这个特性,获得那些经过is.na 后,行和不是0 的行,那就代表其存在表示TRUE(NA)的数据了: > rcmat[!...非常贴心的将缺失值替换为其所在列的上一行数值的值: > fill(X,X1,X2) X1 X2 1 A 1 2 B 1 3 C 3 4 D 4 5 E 5 6 E 6 >

    4.8K30

    R语言缺失值处理的结果可视化

    缺失值的发现和处理在我们进行临床数据分析的时候是非常重要的环节。今天给大家介绍一个包mice主要用来进行缺失值的发现与填充。同时结合VIM包进行缺失变量的可视化展示。...##查看数据缺失的模式md.pattern(nhanes) ? 还有另外一种描述展示: fluxplot(nhanes) ? 从上图我可以看出变量越往左上代表确实越少,越往右下代表缺失越严重。...接下来就是我们如何填充呢,缺失值填充函数mice中包含了很多的填充方法: ?...我们还可以看下每个变量的分布密度图是否存在差异。 densityplot(imp) ? 最后我们看下在VIM中是如何可视化结果的。...图中橘黄色代表填充的点数据。当然还有一个impute包专门用来进行缺失值填充的,大家可以根据自己的需要进行选择,我是觉得有图有真相。

    1.9K20

    数据咖小课堂:R语言十八讲--(补充)处理缺失值

    缺失值处理在数据分析中是关键的一步,而且是开始的关键一步,我们对于数据的缺失处理直接影响模型的准确性. 1.产生的原因: 调查者忘记回答了,拒绝回答,不完整的问卷,设备出故障,网络连接失效,数据误记,有意而为之等等...我们做这么多探索,缺失值的数目,以及分布模式主要为了,分析缺失数据的潜在机制,评价缺失数据对分析 目标的影响.也即需要搞清楚: 缺失数据比例多大;缺失数据分布情况,缺失是随机的吗...,还包括贝叶斯线性回归,判别分析,两水平正太插补,以及随机抽样,下面是mice包的实现与原理 一起看看它到底怎么插补的:其中1.是每个变量的缺失情况 2,各变量的插补方法 3,为预测平均 下面的矩阵说明每个变量的插补参考了哪些变量...具体插补的值是多少我们也可以看看. 分别是5次模拟数据集中,dream的缺失插补值....完整的模拟数据集中的第2个就是: 其他方法: 3,缺失值分类 完全随机缺失(MCAR):某个变量的观测值缺失与自身其他观测,以及其他数据集中的变量无关. eg:工作人员忘记填了 随机缺失(MAR):

    1.3K80

    独家 | 手把手教你处理数据中的缺失值

    完全随机缺失(MCAR):空值的出现与记录中已知或者未知特征是完全无关的。再次重申,这取决于你的数据集是否能被测试。...你可能已经想过,在第二个例子中,只有删除空值是最安全的做法。 在其他两种情况中,删除空值会导致无视整体统计人口中的一组。 在最后一个例子中,记录拥有空值的事实中会携带一些关于实际值的信息。...线性插值法:(仅用于完全随机缺失(MCAR)下的时间序列)在具有趋势和几乎没有季节性问题的时间序列中,我们可以用缺失值前后的值进行线性插值来估算出缺失值。 ?...因为这个方法考虑了其他变量的记录值,所以我们可以使用这些变量缺失和非缺失值的不同信息来预测缺失值。...多重插补法:(仅适用于随机遗失(MAR)和完全随机遗失(MCAR))多重插补法是最好的处理缺失值的方法。这个方法用一个模型多次估算缺失值,因为模型允许同一个观测结果有不同的预测值。

    1.4K10

    超详细的 R 语言插补缺失值教程来啦~

    在分析数据集时,常常会碰到一些缺失值,如果缺失值的数量相对总体来说非常小,那么直接删除缺失值就是一种可行的方法。但某些情况下,直接删除缺失值可能会损失一些有用信息,此时就需要寻找方法来补全缺失值。...数据处理 本文,我们将使用 R 自带的一个空气质量数据集airquality来估算缺失的值。为了介绍 mice 包的用法,先从数据集中删除一些数据点,制造一个缺失数据集。...左边的红箱显示了缺失 Ozone 的 Solar.R 的分布,蓝箱表示剩余数据点的分布。底部的红箱显示了缺失 Solar.R 的 Ozone 分布。...缺失值被编码为 NA。 m:多重插补法的数量,默认为 5。 method:指定数据中每一列的输入方法。...)中确定拟合度最好的线,然后通过修改imp的值,直到在右侧图形中找到那条线。

    16.3K74

    R语言缺失值的处理:线性回归模型插补

    ---- 视频 缺失值的处理:线性回归模型插补 ---- 我们在这里模拟数据,然后根据模型生成数据。未定义将转换为NA。一般建议是将缺失值替换为-1,然后拟合未定义的模型。...默认情况下,R的策略是删除缺失值。...5%的缺失值,我们有 ​ 如果我们查看样本,尤其是未定义的点,则会观察到 ​ 缺失值是完全独立地随机选择的, x1=runif(n) plot(x1,y,col=clr) ​ (此处缺失值的...这个想法是为未定义的缺失预测值预测。最简单的方法是创建一个线性模型,并根据非缺失值进行校准。然后在此新基础上估算模型。...8.R语言用线性回归模型预测空气质量臭氧数据 9.R语言分层线性模型案例

    3.6K11

    R语言:用R语言填补缺失的数据

    尽管某些快速修正如均值替代在某些情况下可能很好,但这种简单的方法通常会向数据中引入偏差。 在这篇文章中,我们将使用airquality数据集(在R中提供)来推测缺失值。...为了本文的目的,我将从数据集中删除一些数据点。 快速分类缺失数据 有两种类型的缺失数据: MCAR:随意丢失。 MNAR:不是随意丢失的。...查看缺失的数据模式 该mice软件包提供了一个很好的功能md.pattern(),可以更好地理解丢失数据的模式 输出结果告诉我们,104个样本是完整的,34个样本只错过臭氧测量,4个样本只错过了Solar.R...值,等等。...左边的红色方块图显示Solar.R的分布与臭氧缺失,而蓝色方块图显示剩余数据点的分布。 如果我们假设MCAR数据是正确的,那么我们预计红色和蓝色方块图非常相似。

    1.1K10

    R语言处理缺失数据的高级方法

    的逻辑向量,若每行有一个或多个缺失值,则返回FALSE; 3.探索缺失值模式 (1)列表显示缺失值 mice包中的md.pattern()函数可以生成一个以矩阵或数据框形式展示缺失值模式的表格 [plain...8.处理缺失值的其他方法 处理缺失数据的专业方法 软件包 描述 Hmisc 包含多种函数,支持简单插补、多重插补和典型变量插补 mvnmle 对多元正态颁数据中缺失值的最大似然估计 cat 对数线性模型中多元类别型变量的多重插补...(2)简单(非随机)插补 简单插补,即用某个值(如均值、中位数或众数)来替换变量中的缺失值。注意,替换是非随机的,这意味着不会引入随机误差(与多重衬托不同)。...9.R中制作出版级品质的输出 常用方法:Sweave和odfWeave。 Sweave包可将R代码及输出嵌入到LaTeX文档中,从而得到 PDF、PostScript和DVI格式的高质量排版报告。...odfWeave包可将R代码及输出嵌入到ODF(Open Documents Format)的文档中

    2.7K70

    左手用R右手Python系列8——数据去重与缺失值处理

    因为最近事情略多,最近更新的不勤了,但是学习的脚步不能停,一旦停下来,有些路就白走了,今天就盘点一下R语言和Python中常用于处理重复值、缺失值的函数。...在R语言中,涉及到数据去重与缺失值处理的函数一共有下面这么几个: unique distinct intersect union duplicated #布尔判断 is.na()/!...na.rm=TRUE/FALSE #移除缺失值 rm.na通常作为基础统计函数的参数使用,如mean,sum等 mean(mydata$A,na.rm=TRUE) sum(mydata$A,na.rm...pandas中的序列和数据框都有固定的缺失值检测、描述、差值方法: myserie=pd.Series(["A","B",np.nan,"C"]) mydata=pd.DataFrame({ "A":[...(针对pandas中的序列和数据框) 缺失值处理: nansum/nanmean/nanmin/nanmax isnull dropna fillna

    1.9K40

    Python中处理缺失值的2种方法

    在上一篇文章中,我们分享了Python中查询缺失值的4种方法。查找到了缺失值,下一步便是对这些缺失值进行处理,今天同样会分享多个方法!...how:与参数axis配合使用,可选的值为any(默认)或者all。 thresh:axis中至少有N个非缺失值,否则删除。 subset:参数类型为列表,表示删除时只考虑的索引或列名。...inplace:是否在原数据上操作。...在交互式环境中输入如下命令: df.fillna(value=0) 输出: 在参数method中,ffill(或pad)代表用缺失值的前一个值填充;backfill(或bfill)代表用缺失值的后一个值填充...今天我们分享了Python中处理缺失值的2种方法,觉得不错的同学给右下角点个在看吧,建议搭配前文Python中查询缺失值的4种方法一起阅读。

    2.1K10

    Python中查询缺失值的4种方法

    在我们日常接触到的Python中,狭义的缺失值一般指DataFrame中的NaN。广义的话,可以分为三种。...今天聊聊Python中查询缺失值的4种方法。 缺失值 NaN ① 在Pandas中查询缺失值,最常用的⽅法就是isnull(),返回True表示此处为缺失值。...缺失值 NaN ② 由于在Pandas中isnull()方法返回True表示此处为缺失值,所以我们可以对数据集进行切片也可实现找到缺失值。...另外,notnull()方法是与isnull()相对应的,使用它可以直接查询非缺失值的数据行。...等 很多时候,我们要处理的是本地的历史数据文件,在这些Excel中往往并不规范,比如它们有可能会使用“*”、“?”、“—”、“!”等等字符来表示缺失值。

    4.3K10
    领券