首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从原始df中以list为列的另一帧创建新的dataframe?

要从原始df中以list为列的另一帧创建新的dataframe,可以使用pandas库来实现。

首先,我们需要创建一个空的dataframe,并将list作为其中一列。然后,我们可以使用pandas的concat函数将原始df和新创建的dataframe按列连接起来。

以下是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 原始df
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

# 要作为列的list
list_col = [7, 8, 9]

# 创建新的dataframe
new_df = pd.DataFrame({'C': list_col})

# 将原始df和新的dataframe按列连接起来
result_df = pd.concat([df, new_df], axis=1)

print(result_df)

输出结果为:

代码语言:txt
复制
   A  B  C
0  1  4  7
1  2  5  8
2  3  6  9

在这个例子中,原始df有两列'A'和'B',新创建的dataframe有一列'C',然后使用concat函数将它们按列连接起来,得到了一个新的dataframe result_df。

这个方法可以用于在原始df中添加任意数量的以list为列的新dataframe。

关于pandas库的更多信息和使用方法,可以参考腾讯云的产品介绍链接地址:腾讯云-云计算

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PySpark UD(A)F 的高效使用

如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...除了转换后的数据帧外,它还返回一个带有列名及其转换后的原始数据类型的字典。 complex_dtypes_from_json使用该信息将这些列精确地转换回它们的原始类型。...(), df.printSchema() [dbm1p9b1zq.png] 2) 定义处理过程,并用封装类装饰 为简单起见,假设只想将值为 42 的键 x 添加到 maps 列中的字典中。

19.7K31

直观地解释和可视化每个复杂的DataFrame操作

操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...原始DataFrame的状态围绕DataFrame的中心元素旋转到一个新元素。有些元素实际上是在旋转或变换的(例如,列“ bar ”),因此很重要。...包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ? 结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。...为了访问狗的身高值,只需两次调用基于索引的检索,例如 df.loc ['dog']。loc ['height']。 要记住:从外观上看,堆栈采用表的二维性并将列堆栈为多级索引。

13.3K20
  • 如何用Python将时间序列转换为监督学习问题

    t 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 通过在观测值的列数据中插入新的一列,我们可以将上面展示的观测值位置下移一格,由于新加的一行并没有数据...(1) print(df) 运行代码,我们在原有数据集的基础上得到了两列数据,第一列为原始的观测值,第二列为下移后得到的新列。...从这一节我们可以看到我们可以通过设定shift函数左移或右移来从原始时间序列上创建用于监督学习的输入和输出模式组成的序列。...该函数返回一个值: return:为监督学习重组得到的Pandas DataFrame序列。 新的数据集将被构造为DataFrame,每一列根据变量的编号以及该列左移或右移的步长来命名。...除此之外,具有NaN值的行已经从DataFrame中自动删除。 我们可以指定任意长度的输入序列(如3)来重复这个例子。

    24.9K2110

    使用Python分析姿态估计数据集COCO的教程

    添加额外列 一旦我们将COCO转换成pandas数据帧,我们就可以很容易地添加额外的列,从现有的列中计算出来。 我认为最好将所有的关键点坐标提取到单独的列中,此外,我们可以添加一个具有比例因子的列。...我们将原始列与新列进行合并。...最后,我们创建一个新的数据帧(第58-63行) 鼻子在哪里? 我们通过检查图像中头部位置的分布来找到鼻子的坐标,然后在标准化的二维图表中画一个点。 ?...) # 使用标准化的数据创建新数据帧 coco_noses_df = pd.DataFrame( coco_noses, columns=list(horiz_imgs_df.columns...接下来,我们用训练集和验证集中每个规模组的基数创建一个新的数据帧,此外,我们添加了一个列,其中包含两个数据集之间差异的百分比。 结果如下: ?

    2.5K10

    1. Pandas系列 - 基本数据结构

    数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列 数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴(行和列) 可以对行和列执行算术运算 构造函数...这只有在没有索引传递的情况下才是这样。 4 dtype 每列的数据类型。 5 copy 如果默认值为False,则此命令(或任何它)用于复制数据。...创建DataFrame Pandas数据帧(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据帧(DataFrame) 列表 import...= df.append(df2) print df 删除行 drop 使用索引标签从DataFrame中删除或删除行。...=2 dtype 每列的数据类型 copy 复制数据,默认 - false 创建面板 可以使用多种方式创建面板 从ndarrays创建 从DataFrames的dict创建 从3D ndarray创建

    5.2K20

    介绍一种更优雅的数据预处理方法!

    在本文中,我们将重点讨论一个将「多个预处理操作」组织成「单个操作」的特定函数:pipe。 在本文中,我将通过示例方式来展示如何使用它,让我们从数据创建数据帧开始吧。...上述数据中 NaN 表示的缺失值,id 列包含重复的值,B 列中的 112 似乎是一个异常值。...这些就是现实数据中的一些典型问题。我们将创建一个管道来处理刚才描述的问题。对于每个任务,我们都需要一个函数。因此,首先是创建放置在管道中的函数。...].between(low, high, inclusive=True)] return df 此函数的作用如下: 需要一个数据帧和一列列表 对于列表中的每一列,它计算平均值和标准偏差 计算标准差...这里需要提到的一点是,管道中的一些函数修改了原始数据帧。因此,使用上述管道也将更新df。 解决此问题的一个方法是在管道中使用原始数据帧的副本。

    2.2K30

    Pandas Sort:你的 Python 数据排序指南

    行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...为了说明 的使用.sort_index(),首先使用以下方法创建一个新的排序 DataFrame .sort_values(): >>> >>> sorted_df = df.sort_values(by...以下代码基于现有mpgData列创建了一个新列,映射True了mpgData等于Y和NaN不等于的位置: >>> >>> df["mpgData_"] = df["mpgData"].map({"Y":...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。....sort_values()就地使用 随着inplace设置为True,您修改原始数据帧,所以排序方法返回None。

    14.3K00

    数据科学 IPython 笔记本 7.6 Pandas 中的数据操作

    2 9.0 3 5.0 dtype: float64 ''' 数据帧中的索引对齐 在DataFrames上执行操作时,列和索引都会发生类似的对齐: A = pd.DataFrame(rng.randint...0 1.0 15.0 NaN 1 13.0 6.0 NaN 2 NaN NaN NaN 请注意,索引是正确对齐的,无论它们在两个对象中的顺序如何,并且结果中的索引都是有序的。...执行DataFrame和Series之间的操作时,与之相似,索引和列是保持对齐的。...在 Pandas 中,按照惯例,默认情况下逐行操作: df = pd.DataFrame(A, columns=list('QRST')) df - df.iloc[0] Q R S T 0 0 0...1 -1.0 NaN 2.0 NaN 2 3.0 NaN 1.0 NaN 索引和列的保留和对齐意味着,Pandas 中的数据操作将始终维护数据上下文,这可以防止在处理原始 NumPy 数组中的异构和

    2.8K10

    Day5:R语言课程(数据框、矩阵、列表取子集)

    学习目标 演示如何从现有的数据结构中取子集,合并及创建新数据集。 导出数据表和图以供在R环境以外使用。...---- 注意:有更简单的方法可以使用逻辑表达式对数据帧进行子集化,包括filter()和subset()函数。这些函数将返回逻辑表达式为TRUE的数据帧的行,允许我们在一个步骤中对数据进行子集化。...从metadata列表的组件中提取celltype列。从celltype值中仅选择最后5个值。 ---- 为列表中的组件命名有助于识别每个列表组件包含的内容,也更容易从列表组件中提取值。...列表的组件命名数据框的列命名使用的函数都是names()。 查看list1组件的名称: names(list1) 创建列表时,将species向量与数据集df和向量number组合在一起。...从list1中提取species: list1[[1]] list1[["species"]] list1$species ---- 练习 练习结合从目前为止我们所讲过的数据结构中提取数据的方法: 设置在上一个练习中创建的列表

    17.8K30

    python对100G以上的数据进行排序,都有什么好的方法呢

    行和列都有索引,它是数据在 DataFrame 中位置的数字表示。您可以使用 DataFrame 的索引位置从特定行或列中检索数据。默认情况下,索引号从零开始。您也可以手动分配自己的索引。...与 using 的不同之处.sort_values()在于您是根据其行索引或列名称对 DataFrame 进行排序,而不是根据这些行或列中的值: DataFrame 的行索引在上图中以蓝色标出。...为了说明 的使用.sort_index(),首先使用以下方法创建一个新的排序 DataFrame .sort_values(): >>> >>> sorted_df = df.sort_values(by...以下代码基于现有mpgData列创建了一个新列,映射True了mpgData等于Y和NaN不等于的位置: >>> >>> df["mpgData_"] = df["mpgData"].map({"Y":...通常,这是使用 Pandas 分析数据的最常见和首选方法,因为它会创建一个新的 DataFrame 而不是修改原始数据。这允许您保留从文件中读取数据时的数据状态。

    10K30

    用Python将时间序列转换为监督学习问题

    我们可以定义一个由 10 个数字序列组成的伪时间序列数据集,该例子中,DataFrame 中的单个一列如下所示: from pandas import DataFrame df = DataFrame(...由于新的一行不含数据,可以用 NaN 来表示“无数据”。 Shift 函数能完成该任务。我们可以把处理过的列插入到原始序列旁边。...第一列是原始观察,第二列是 shift 过新产生的列。 可看到,把序列向前 shift 一个时间步,产生了一个原始的监督学习问题,虽然 X 、y 的顺序不对。无视行标签的列。...函数返回一个单个的值: return: 序列的 Pandas DataFrame 转为监督学习。 新数据集创建为一个 DataFrame,每一列通过变量字数和时间步命名。...还可以看到,NaN 值得行,已经自动从 DataFrame 中移除。我们可以用随机数字长度的输入序列重复该例子,比如 3。这可以通过把输入序列的长度确定为参数来实现。

    3.8K20

    python数据分析——数据预处理

    数据特征工程则是为了从原始数据中提取出更多有用的信息,以提高模型的性能。特征工程通常包括特征选择、特征构造和特征降维等步骤。...然后,我们使用interpolate方法进行线性、二次、三次和四次插值,并将插值结果存储在新的列中。最后,我们打印整个DataFrame对象,以查看插值结果。...如果设置为True,则创建并返回一个新的Series或DataFrame,数据类型被转换为指定的数据类型。...可以是单个列名的字符串,也可以是列名列表。 drop:指示是否在新索引中保留原有的列。默认为True,表示将原有的列从DataFrame中删除。 append:指示是否将新的索引添加到原有的索引之后。...需要注意的是,insert()方法会改变原始列表,而不是创建一个新的列表。如果希望在不改变原始列表的情况下插入元素,可以使用切片和拼接操作来实现。

    9410

    Python 数据科学入门教程:Pandas

    因此,我们使用df.rename,指定我们要重命名的列,然后在字典形式中,键是原始名称,值是新名称。 我们最终使用inplace = True,以便修改原始对象。...为了引用第零列,我们执行fiddy_states[0][0]。 一个是列表索引,它返回一个数据帧。 另一个是数据帧中的一列。...我认为我们最好坚持使用月度数据,但重新采样绝对值得在任何 Pandas 教程中涵盖。现在,你可能想知道,为什么我们为重采样创建了一个新的数据帧,而不是将其添加到现有的数据帧中。...创建标签对监督式机器学习过程至关重要,因为它用于“教给”或训练机器与特征相关的正确答案。 Pandas 数据帧映射函数到非常有用,可用于编写自定义公式,将其应用于整个数据帧,特定列或创建新列。...如果你回想一下,我们生成了一些新列,比如df['Column2'] = df['Column1']*1.5,等等。如果你想创建更多的逻辑密集操作,但是,你会希望写一个函数。我们将展示如何实现它。

    9.1K10

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...ignore_index参数设置为 True 以在追加行后重置数据帧的索引。 然后,我们将 2 列 [“薪水”、“城市”] 附加到数据帧。“薪水”列值作为系列传递。序列的索引设置为数据帧的索引。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。

    28030

    使用Python在Neo4j中创建图数据库

    图数据库的一个最常见的问题是如何将数据存入数据库。在上一篇文章中,我展示了如何使用通过Docker设置的Neo4j浏览器UI以几种不同的方式之一实现这一点。...,但为了这篇文章的目的,我们将在Python中做清理,以便说明 让我们创建两个帮助函数来清理这两列: def get_author_list(line): # 清除author dataframe...列,在行中创建作者列表。...return [e[1] + ' ' + e[0] for e in line] def get_category_list(line): # 清除“category”列,在该行中创建类别列表...同样,在这个步骤中,我们可能会在完整的数据帧上使用类似于explosion的方法,为每个列表的每个元素获取一行,并以这种方式将整个数据帧载入到数据库中。

    5.5K30

    创建DataFrame:10种方式任你选!

    微信公众号:尤而小屋 作者:Peter 编辑:Peter DataFrame数据创建 在上一篇文章中已经介绍过pandas中两种重要类型的数据结构:Series类型和DataFrame类型,以及详细讲解了如何创建...本文介绍的是如何创建DataFrame型数据,也是pandas中最常用的数据类型,必须掌握的,后续的所有连载文章几乎都是基于DataFrame数据的操作。...) df22 [008i3skNgy1gqfmdprig0j30gu08y74p.jpg] 总结 数据帧(DataFrame)是pandas中的二维数据结构,即数据以行和列的表格方式排列,类似于 Excel...它在pandas中是经常使用,本身就是多个Series类型数据的合并。 本文介绍了10种不同的方式创建DataFrame,最为常见的是通过读取文件的方式进行创建,然后对数据帧进行处理和分析。...希望本文能够对读者朋友掌握数据帧DataFrame的创建有所帮助。 下一篇文章的预告:如何在DataFrame中查找满足我们需求的数据

    4.7K30

    上手Pandas,带你玩转数据(1)-- 实例详解pandas数据结构

    Series 创建序列 访问序列 DataFrame 创建DataFrame 访问DataFrame 列处理 行处理 panel 创建Panel 从panel中选择数据 基本方法速查 Series...这只有在没有通过索引的情况下才是正确的。 dtype:每列的数据类型。 copy:如果默认值为False,则使用该命令(或其它)复制数据。...---- 创建DataFrame 创建一个空的DataFrame:df = pd.DataFrame() ---- 从列表中创建一个DataFrame: data = [1,2,3,4,5] df =...1 2 NaN second 5 10 20.0 字典列表可以作为输入数据传递以创建DataFrame。...---- DataFrame基本方法 属性或方法 描述 Ť 转置行和列。 axes 以行轴标签和列轴标签作为唯一成员返回列表。 dtypes 返回此对象中的dtypes。

    6.7K30
    领券