首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

一种用于360度全景视频超分的单帧多帧联合网络

一种用于360度全景视频超分的单帧多帧联合网络 论文、代码地址:在公众号「3D视觉工坊」,后台回复「全景视频超分」,即可直接下载。...首次利用深度学习对360°全景视频的超分进行了探索,并提出了一种新颖的全景视频超分辨率模型。 2. 我们设计了单帧多帧联合网络(SMFN),并提供了加权损失函数,使网络更加注重赤道地区的恢复。 3....我们为360°全景视频的超分构建了第一个数据集。我们希望我们的新见解能够加深对全景视频超分研究的认识。 ? 方法 网络架构 该方法由单帧超分网络、多帧超分网络、对偶网络和融合模块构成。...然后通过对准模块将相邻帧的特征与目标帧的特征进行对齐。将对齐后的特征输入重建模块,得到高分辨率图像。单帧网络直接对目标帧进行单帧图像超分辨率处理。...它共包含204个全景视频,是目前应用最广泛的全景内容投影方案之一,每段视频包含100帧分辨率在4096×2048到1440×720之间。从室外到室内,从白天到晚上,场景各不相同。

1.1K20

什么是视频关键帧?流媒体服务器如何提取视频的关键帧?

我上一篇文章写了关于视频直播点播服务器中调整关键帧间隔的方法,同时也发现也是有一部分的开发者是有这个需求的。...视频关键帧分为I帧,P帧,B帧,这里介绍下区别,也是我搜索得到的,仅供参考。I帧才是关键帧,P,B算不上关键帧。...I帧是帧内压缩编码得到的,通常是每个GOP组的第一帧/基础帧,在一组中只有一个I帧,I帧所占信息量大,解码时仅有I帧即可完整重构图像,所以才叫关键帧。...P帧与B帧是帧间压缩,P帧没有完整图像数据,只有与前一帧的差别信息,因此也叫预测帧,B帧则是考虑前后帧的差别(故而也叫双向预测帧),因此B帧解码时间最长,压缩比最大。 那怎么提取视频的关键帧呢?...其实提取关键帧比提取视频帧快很多倍,下面我就基于Android系统来讲一下提取视频帧的方法: 第一个参数 是传入截取时间,只能是us(微秒) 第二个参数 OPTION_CLOSEST 在给定的时间,检索最近一个帧

4.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    视频图像处理中的错帧同步是怎么实现的?

    我们在做相机预览和视频流处理时,对每帧图像处理时间过长(超过 30 ms)就很容易造成画面卡顿,这个场景就需要用到错帧同步方法去提升画面的流畅度。...错帧同步的原理 错帧同步的原理如上图所示,我们开启三个线程:一个主线程,两个工作线程,每一帧图像的处理任务分为 2 步,第一个工作线程完成第一步处理,第二个工作线程完成第二步处理,每一帧都要经过这两步的处理...,表示工作线程对视频帧做了处理,最后的输出(第 0 帧除外)都是经过工作线程标记过的字符串。...“视频帧”,将“视频帧”传给第一个工作线程进行第一步处理,然后等待第二个工作线程的处理结果。...主线程打印的处理结果 我们设定视频帧的 2 步处理一共耗时 400 ms (各休眠 200 ms),由于采用错帧同步方式,主线程耗时只有 200 ms 左右,性能提升一倍。 ? 主线程耗时

    1.4K30

    英伟达 & MIT 提出 LongVILA ,从 8 帧到 1024 帧 如何实现长视频理解的飞跃 ?

    某些多模态投影器(如空间池化和Q-former)可以显著减少每个图像或视频帧中的标记数量,从而降低LLM解码器的计算负担。...获得长期视频数据集后,在有监督的微调中的应用带来了新的挑战,主要是由于每个样本中的帧数量巨大——通常在数百或甚至数千帧之间。例如,来自1400帧视频序列的一个单一序列可以包括约274k个标记。...如图6所示,该过程首先将图像(例如视频帧)均匀分布在序列并行性(SP)过程组中的设备上,从而在图像编码阶段实现负载均衡。在第二阶段,作者将全局视觉和文本输入聚合为 Token 级分片。...遵循现有文献中确立的方法论(张等人),作者准备了一段长视频并从中采样了固定数量的帧。作者在各个深度插入特定设计的图像,并将任务交给模型回答相应的问题。...Baseline 模型(左)在32帧处之后无法准确检索正确图像。相比之下,LongVILA模型(右)在帧数和深度方面都展示了增强的性能。

    42010

    Golang开发中如何判断H265中的视频帧类型

    可以通过对应的解析函数ParseSliceHeaderFromNALU返回对应的帧类型:     payloads, _ := h265parser.SplitNALUs(payload)     payloadsLen..., sliceType.String())         }         log.Printf(sliceType.String())     } 分析下h265码流(字节流模式),nal单元如何分割类型...如果NALU类型为vps,sps,pps,或者解码顺序为第一个AU的第一个NALU,起始码前面再加一个0x00。视频流的首个NALU的起始码前加入0x00。...我们还拿上图中的内容进行分析,上图码流nal拆分为: 第一帧: 0000 0001 4001 0c01 ffff 0160 0000 0300 0003 0000 0300 0003 00ba 9702...557c 74… 以下是NAL类型分析: 类型判断方式为分隔符之后的第一个字节右移一位的值 第一帧:0x40 >> 1,得到0x20,十进制32,为NAL_VPS 第二帧:0x42 >> 1,得到0x21

    1.3K10

    如何用Python提取视频的某些帧并保存为图片

    以前的文章分享过,视频是连续图像的集合。那么我们是否可以提取一段视频中,某些我们想要的部分图像,保存下来呢?答案是可以。我们甚至可以通过视频的时间来提取视频中的某些图像。...dst + str(c) + '.jpg',frame) c = c + 1 cv2.waitKey(1) vc.release() 程序主要功能是将根据时间提取视频图像并保存...它需要两个参数,一个为视频的名字,另一个为提取图片的保存路径。每隔1000帧保存一张图像到本地。也可以指定一个帧的范围,比如提取100到500帧的图像。...程序是非常灵活的,想要做成什么,完全取决于你的想法和创意。 比如你可以通过修复视频中每一帧图像,实现视频修复。

    1.2K30

    EasyGBS因获取不到I帧无法播放视频的情况应该如何优化?

    随着现在新内核的EasyGBS、EasyNVR以及EasyCVR的使用场景越来越广泛,这些产品也被运用在大小不同的很多实际项目中。...在功能上,基本都能满足大部分用户的需求,也有少部分项目需要进行功能的定制。...image.png 在某EasyGBS现场接入的摄像头,在第一次发送视频流会发送I帧,但在之后,就不会发送I帧,导致只有第一次播放可以正常,再次点击播放则解析不到I帧视频导致不能播放。...由于该现场是以国标协议接入的,国标协议中有强制获取I帧的命令,在每次拉流之前执行一次强制获取I帧的命令,那么就可以解决无I帧的问题。...image.png 于是我们添加以下强制获取I帧的命令,编写如下: image.png 在拉流之前调用: image.png EasyGBS为大家提供了试用版本,供大家测试使用,并且试用版本也支持正常调用

    50470

    可变形卷积在视频学习中的应用:如何利用带有稀疏标记数据的视频帧

    假设我们有一个视频,其中每个帧都与其相邻帧相似。然后我们稀疏地选择一些帧,并在像素级别上对其进行标记,例如语义分割或关键点等。...学习稀疏标记视频的时间姿态估计 这项研究是对上面讨论的一个很好的解决方案。由于标注成本很昂贵,因此视频中仅标记了少量帧。然而,标记帧图像中的固有问题(如遮挡,模糊等)阻碍了模型训练的准确性和效率。...利用多分辨率特征金字塔构造可变形部分,并采用不同的扩张方法。该方法的优点在于,我们可以利用相邻的未标记帧来增强已标记帧的特征学习,因为相邻帧相似,我们无需对视频的每一帧进行标记。...这种可变形的方法,也被作者称为“扭曲”方法,比其他一些视频学习方法,如光流或3D卷积等,更便宜和更有效。 如上所示,在训练过程中,未标记帧B的特征图会扭曲为其相邻的标记帧A的特征图。...结论 将可变形卷积引入到具有给定偏移量的视频学习任务中,通过实现标签传播和特征聚合来提高模型性能。与传统的一帧一标记学习方法相比,提出了利用相邻帧的特征映射来增强表示学习的多帧一标记学习方法。

    2.8K10

    DeepLab2:用于深度标记的TensorFlow库(2021)

    请注意,与其他基于提案的模型不同,我们的模型生成不重叠的实例掩码。 图像全景分割 统一语义分割和实例分割。...单目深度估计试图通过用估计的深度值标记每个像素来理解场景的 3D 几何形状。 视频全景分割将图像全景分割扩展到视频域,其中在整个视频序列中强制执行时间一致的实例标识。...深度感知视频全景分割通过解决深度估计、全景分割和像素级跟踪的联合任务,提供深入的场景理解。视频中的每个像素都标有语义类、时间一致的实例身份和估计的深度值。...网络输入不是使用单个 RGB 图像作为输入,而是包含两个连续的帧,即当前帧和前一帧,以及前一帧的中心热图 [76]。输出用于为整个视频序列中的所有实例分配一致的轨道 ID。...它通过添加深度预测头来执行单目深度估计和下一帧实例分支以生成具有时间一致的视频实例 ID 的全景预测,从而扩展了 Panoptic-DeepLab [13]。

    80610

    如何确认EasyNVR拉转推视频流到EasyDSS播放出现掉帧的问题?

    EasyDSS视频平台支持全平台的直播和点播,并且能够分发多种协议(hls、rtmp、flv、rtsp)的视频流,很多有在线课堂或在线医疗需求的项目团队在流媒体服务器的选择中,都会优先测试EasyDSS...EasyDSS在测试过程中,播放全协议的视频偶尔会出现卡顿的问题,这个问题出现的原因其实与EasyDSS系统内拉转推视频流的操作有关,具体可以参考:EasyDSS如何解决由拉转推造成的CPU占用问题。...在该问题中,我们的解决方法是通过EasyNVR拉取点播的视频流,再转推给EasyDSS。 我们对该方法也进行了验证,但测试的同时也伴随新的问题。...那就是在播放通过EasyNVR转推来的视频时,出现了类似掉帧的播放画面。 针对掉帧问题,可以从多个方面来进行分析。...1、视频源 视频源是通过点播文件来实现的,我们测试了其他方式来处理视频的推送,发现不同的视频源通过EasyNVR推流都会出现类似于掉帧的问题。

    68220

    编码压缩新思路:面向QoE的感知视频编码

    十几年的发展带来的首要影响就是数据量的激增,如何稳定高效传输大量用户随时随地采集到的音视频数据成为我们亟待解决的问题。...如此庞大的数据量无疑会为图像识别与通讯网络的发展带来巨大挑战,受限于通讯资源,我们的实际传输带宽资源远没有视频数据量所要求的那么充裕;若想借助有限的带宽资源快速稳定传输大量的图像与视频数据,则离不开高效的视频编码解决方案...,那么人眼是如何利用这样一个窄带带宽传输像素高达十亿的高清视觉信号呢?...首先我们明确了如何察觉到视频感知冗余的出现,解决方案是借助机器学习与计算机视觉检测出视频画面里用户会重点关注的部分;当监测到感知冗余出现之后,我们尝试减少感知冗余与其影响,解决方案是重新分配资源,将更多码率与复杂度分配到用户感兴趣的视觉感知区域...在帧间模式上我们的复杂度可降低约54%,与此同时BDBR增加约1.459%,BDPSNR损失约0.046%;对于帧内模式而言同时测试图像与视频,无论是视频还是图像其复杂度都会降低约60%,与此同时BDBR

    65420

    基于FPGA的视频图像拼接融合

    基于FPGA的视频图像拼接融合 本项目简单来说,就是实时生成视频全景图,该架构经过优化,可以实时视频输出。...输入的 8 位图像如下图所示。 视频流的每个单独帧将具有对应于红色、绿色和蓝色的三个通道。视频帧中的颜色信息不会增强特征检测。此外,与单通道 8 位图像相比,3 通道 8 位图像的计算需要更多时间。...因此,RGB 视频帧被转换为 8 位灰度图像。生成的灰度图像噪声更小,阴影细节更多,计算效率更高,如下图所示。 基于SIFT的特征提取 使用SIFT算法从灰度图像中提取特征。...将它们的关键点描述符之间差异最小的关键点对作为参考关键点。 图像融合 加权平均方法用于将两个帧混合成单个图像。重叠区域的像素值等于两帧像素的加权平均值。...根据重叠像素和相应帧的边界之间的距离选择权重。 拼接图像 FPGA程序顶层设计 顶层架构的框图如下图所示。

    3.6K41

    CVPR 2020 oral 首次提出VPSnet用于分割界新问题-视频全景分割

    在本文中,我们提出并探索了一种新的视频扩展任务,称为视频全景分割。该任务要求生成全景分割以及跨视频帧的实例类别ID。...提出了一种新的视频全景分割网络(VPSNet),它可以联合预测视频帧中的对象类、边界框、掩码、实例id跟踪和语义分割。本文将图像领域的全景分割扩展到视频领域。...通过重新改造VIPER数据集和基于Cityscapes创建新的视频全景标签来构建第一个VPS数据集,而且两个数据集是互补的。 3....像素级融合: 其主要思想是利用视频上下文信息,通过时域有限元法来改进帧特征融合。 目标级跟踪: MaskTrack是为静态图像设计的,只利用外观特征,在训练期间不使用任何视频特征。...第二步是创建一个新的视频全景分割基准——Cityscape-vps,它扩展了图像级Cityscapes数据集。将时间特征融合模块和目标跟踪分支与单帧全景分割网络相结合,提出了一种新的算法VPSNet。

    70620

    基于权重图模型的VR视频比特分配方案

    下图为全景视频的流程图,全景视频是由两个鱼眼相机或多个广角相机进行拍摄后,根据各个相机视频之间的重叠部分拼接在一起而形成的一个360度的视频。在此过程中,一个全景场景可以用一个球面上图案来描述。...比如在目前的广泛应用的高性能视频编码标准(HEVC)中,其中目标的码率控制理论主要是围绕着R和λ之间的关系确立,在目标比特分配步骤中,每个CTU的权重是通过MAD来计算的,而MAD是原始图像与预测图像的误差...最新进展 上海交通大学图像所研究团队提出了一种基于权重图模型的比特分配方案,在一定程度上优化了全景视频编码的质量,这个方案主要包含两个步骤。 第一步是权重图模型的建立。...假设平面视频是分辨率为MxN的ERP格式的视频,由球面到平面的映射函数关系可知,每个采样点的权重为: ? 下图为一帧图像的权重示意图。黑色区域的权重较小,白色区域的权重较大。 ?...图3是该序列中的第7帧图片的对比图。 ? (a) HM ? (b) Proposed 图4 DrivingInCity序列的第7帧图片 更多论文细节和实验分析详见论文: B.

    1.4K40

    论文翻译 | 多鱼眼相机的全景SLAM

    ,以克服跟踪宽基线全景图像序列的困难.我们在超过15公里轨迹的大规模彩信数据集和14000幅全景图像以及小规模公共视频数据集上进行了实验....官方视频展示: 此外,据我们所知,没有专门为全景相机开发的完整的基于特征的SLAM系统.介绍了一种新的基于特征的全景SLAM系统,称为PAN-SLAM,该系统利用多鱼眼相机平台实现全方位成像,提取特征点跟踪新帧和构建地图...局部地图构建 根据全景相机的特殊情形,本文设定共视关键帧必须同时满足: ①与当前关键帧的共视点数≥50个;②与当前关键帧在图像序列中的间隔关键帧不超过40个;③其与当前关键帧的共视点在两帧所在金字塔层数差异...视频序列以每秒25帧的速率采集, 室内环境的基线长度设置为0.03米, 室外环境的基线长度设置为0.05米....考虑到三个185 FoV鱼眼相机生成的全景图像会丢失大量信息(相机之间的大重叠区域), 并会导致明显的拼接偏差, 我们仅使用PAN-SLAM的鱼眼模式进行比较.

    1.8K20

    Facebook VR方案总结(三)

    全景视频具有景深、动态图像、声音等因子,具备声画对位、声画同步的特性,有着良好的沉浸感,极有可能成为未来的视频新型载体。 ?...图1 全景视频中的一帧画面 针对全景视频的拍摄装置,大致可以分为专业级和体验级两种。...至于全景视频的拍摄方式,对于专业级的设备,毫无疑问都是采用固定拍摄的方式,因为在图像拼接的过程中,每个镜头获取的光场信息,图像的亮度、色调等等一定要保持一致,否则在之后的特征点匹配、视差处理、图像融合的过程中...算法主要分为三个步骤:全局运动估计、运动补偿和图像生成,如下图所示。全局运动指的是处于主导地位的像素运动,也可以表示为相机的运动,根据如何估计全局运动可以将算法分为2D稳像和3D稳像两类。...至于如何选取关键帧,算法使用Shi-Tomasi算法生成特征点列表,通过递减特征强度排序,排查列表,当一个特征远离任何先前选择或主动跟踪的特征超过2°时,将其设为关键帧,并产生一个新的轨道,用于后续的跟踪

    1.9K50

    媒矿工厂 2023 年度总结

    他详细探讨了这一系列技术将会如何改变我们的多媒体链条,包括生成、编码和交互方面的进展、前景和挑战。...数字设计 : AIGC 创建者大会 | AI 人像再创作 上海交通大学图像所副所长,宋利教授分享了题为《AI 人像再创作》的演讲,围绕人脸图像 AI 设计的前沿进展,主要介绍了人脸的“玩法”、背后的“技法...TCSVT 2022 | 基于环路多帧预测的深度视频压缩 本文基于端到端深度视频压缩框架,提出了一种环路多帧预测模块,在不额外消耗码率的情况下,对当前帧实现基于多个参考帧的高效预测。...ACM MM 2023 | PanoDiff:从窄视场图片生成全景图 本工作可以从一张或多张从任意角度拍摄的未标注 pose 的 NFoV 图像生成 360° 全景图。...一种基于隐式扩散模型的全景生成网络,使用不完整的全景图和文本提示作为控制信号,并利用几种几何增强方案来确保生成图像的全景图几何属性。

    26710

    OpenGL ES实践教程(四)VR全景视频播放

    加载轨道信息; createAssetReader创建Reader,并设置读取的格式与轨道目标; processAsset开始Reader,并启动CADisplayLink开始读取视频帧; 通过mReaderVideoTrackOutput...这就涉及到两个问题: 将全景的视频信息存储在二维的视频里面; 将二维的视频还原成全景的视频信息。 (摄像机的位置和朝向计算看下面) 思考1:全景视频显示效果与普通视频有何区别?为什么?...越靠近画面的TOP和BOTTOM,图像的扭曲效果就越严重。上图还看不太出来,看看下图。 ? 思考2:是否存在没有扭曲效果的全景显示?...思考 思考0:视频的纹理创建、销毁非常频繁,并且纹理普遍较大,CV对纹理的创建和缓存有针对的优化,故而在处理视频帧的时候推荐通过CV来处理纹理(图像不行)。...总结 demo的起因是群里和徐杰聊天的时候说到最近看到一个全景视频直播,想起以前自己曾想过做一个全景图像,结果因为不懂CV和AVFoundation、没有球体的顶点数据而放弃。

    3.1K40

    Google发布语义分割新数据集!顺带开发个模型屠榜,已被CVPR2021接收

    从图像重建3D世界的能力可以分解为两个独立的子任务:单眼深度估计(从单个图像预测深度)和视频全景分割(实例分割和语义分割)。...论文中还导出了两个数据集,并提出了一种称为深度感知视频全景质量(DVPQ)的新评估指标,这个新指标可以同时评估深度估计和视频全景分割。...ViP-DeepLab是一个统一的模型,可以对图像平面上的每个像素联合执行视频全景分割和单眼深度估计,并在子任务的几个学术数据集取得了sota结果。...如果未将新实例匹配到先前检测到的实例中,则会出现新实例。 ViP-DeepLab的输出可以用于视频全景分割。连接两个连续的帧作为输入。...语义分割输出将每个像素与其语义类别相关联,而实例分割输出则从与第一帧中的单个对象相关联的两个帧中识别像素,输入图像来自Cityscapes数据集。

    59350
    领券