从Mel谱图中计算归一化频率的方法如下:
腾讯云相关产品和产品介绍链接地址:
MFCC是Mel-Frequency Cepstral Coefficients的缩写,全称是梅尔频率倒谱系数。它是在1980年由Davis和Mermelstein提出来的,是一种在自动语音和说话人识别中广泛使用的特征。顾名思义,MFCC特征提取包含两个关键步骤:梅尔频率分析和倒谱分析,下面分别进行介绍。
在音频领域,mel频谱和mfcc是非常重要的特征数据,在深度学习领域通常用此特征数据作为网络的输入训练模型,来解决音频领域的各种分类、分离等业务,如端点侦测、节奏识别、和弦识别、音高追踪、乐器分类、音源分离、回声消除等相关业务。
在语音识别(SpeechRecognition)和话者识别(SpeakerRecognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。
音频项目中,比如识别,重建或者生成任务之前通常都需要将音频从时域转换到频域,提取特征后再进行后续工作。MFCC(Mel-Frequency Cepstral Coefficients),梅尔倒谱系数,就是比较常用的音频特征提取方式。本文主要介绍mfcc提取流程。
来源:DeepHub IMBA本文约6100字,建议阅读10+分钟本文展示了从EDA、音频预处理到特征工程和数据建模的完整源代码演示。 大多数人都熟悉如何在图像、文本或表格数据上运行数据科学项目。但处理音频数据的样例非常的少见。在本文中,将介绍如何在机器学习的帮助下准备、探索和分析音频数据。简而言之:与其他的形式(例如文本或图像)类似我们需要将音频数据转换为机器可识别的格式。 音频数据的有趣之处在于您可以将其视为多种不同的模式: 可以提取高级特征并分析表格数据等数据。 可以计算频率图并分析图像数据等数据。
大多数人都熟悉如何在图像、文本或表格数据上运行数据科学项目。但处理音频数据的样例非常的少见。在本文中,将介绍如何在机器学习的帮助下准备、探索和分析音频数据。简而言之:与其他的形式(例如文本或图像)类似我们需要将音频数据转换为机器可识别的格式。
如果你像我一样,试着理解mel的光谱图并不是一件容易的事。你读了一篇文章,却被引出了另一篇,又一篇,又一篇,没完没了。我希望这篇简短的文章能澄清一些困惑,并从头解释mel的光谱图。
MFCC(Mel-frequency cepstral coefficients):梅尔频率倒谱系数。梅尔频率是基于人耳听觉特性提出来的, 它与Hz频率成非线性对应关系。梅尔频率倒谱系数(MFCC)则是利用它们之间的这种关系,计算得到的Hz频谱特征。主要用于语音数据特征提取和降低运算维度。例如:对于一帧有512维(采样点)数据,经过MFCC后可以提取出最重要的40维(一般而言)数据同时也达到了将维的目的。
最近,Meta团队提出一种通过非侵入式脑磁(电)图(magneto- or electro- encephalography, M/EEG)解码语言的方法。具体地,首先使用深度学习方法对语音输入和对应的脑电(磁)图信号进行解码,得到深层次的特征表示;然后,应用对比学习策略匹配两种模态的潜在特征表示;最终,在四个公共数据集上评估了该模型,该模型可以从3s的MEG信号中识别相应的语音段进行识别,TOP-10的准确率高达72.5%(TOP-1的正确率为44%),在EEG信号的TOP-10准确率为19.1% (允许测试集中存在训练集中不存在的短语)。
torchaudio 的目标是将PyTorch应用到音频领域。通过支持 PyTorch,torchaudio 遵循相同的理念,即提供强大的 GPU 加速,通过 autograd 系统专注于可训练的特征,并具有一致的风格(张量名称和维度名称)。因此,它主要是一个机器学习库,而不是一个通用的信号处理库。PyTorch 的好处可以在 torchaudio 中看到,因为所有计算都通过 PyTorch 操作进行,这使得它易于使用并且感觉像是一个自然的扩展。
目前深度学习模型能处理许多不同类型的问题,对于一些教程或框架用图像分类举例是一种流行的做法,常常作为类似“hello, world” 那样的引例。FastAI 是一个构建在 PyTorch 之上的高级库,用这个库进行图像分类非常容易,其中有一个仅用四行代码就可训练精准模型的例子。随着v1版的发布,该版本中带有一个data_block的API,它允许用户灵活地简化数据加载过程。今年夏天我参加了Kaggle举办的Freesound General-Purpose Audio Tagging 竞赛,后来我决定调整其中一些代码,利用fastai的便利做音频分类。本文将简要介绍如何用Python处理音频文件,然后给出创建频谱图像(spectrogram images)的一些背景知识,示范一下如何在事先不生成图像的情况下使用预训练图像模型。
audioFlux是一个Python和C实现的库,提供音频领域系统、全面、多维度的特征提取与组合,结合各种深度学习网络模型,进行音频领域的业务研发,下面从时频变换、频谱重排、倒谱系数、解卷积、谱特征、音乐信息检索六个方面简单阐述其相关功能。
The wrappers.py module implements wrappers for the layers in layers.py. It includes
上一篇介绍了MFCCs提取的原理和流程,本文介绍使用python实现MFCCs。 回顾下MFCC主要流程 1.读取音频 2. 预加重 3. 加窗 4.分帧 5.傅里叶变换 6.获取mel谱 7.离散余弦变换,得到mel频谱倒谱 下面直接上每一步的代码,主要过程在代码中均有详细注释: # -*- coding: utf-8 -*- # @Time : 2021-05-10 15:41 # @Author : import numpy as np import scipy from scip
『声音』是我们司空见惯再熟悉不过的一种物理现象。我们唱歌发出声音,用耳朵听到声音,用手机记录并分享声音;如果作为音视频开发人员,我们还会在工作中处理众多声音数据。但是,你真的了解『声音』吗?
https://generative-dynamics.github.io/static/pdfs/GenerativeImageDynamics.pdf
计算机音频领域,有近百年的历史,论起这个行业的翘首,DAW(数字音频工作站)当之无愧,集行业各种顶尖技术和人才,产生出工业级标准如Pro Tools,各方一霸如Cubase, Logic, FL Studio ......
其中,声学模型主要描述发音模型下特征的似然概率,语言模型主要描述词间的连接概率;发音词典主要是完成词和音之间的转换。 接下来,将针对语音识别流程中的各个部分展开介绍。
5.声码器 1. world 1. github地址:https://github.com/r9y9/wavenet_vocoder 2.world主要提取提取pitch音高(基频,F0)、谐波谱包络线、非周期谱包络线
来自Chang Lab: HTTP://changlab.ucsf.edu/publications/speech-lab
目前网上关于tensorflow 的中文语音识别实现较少,而且结构功能较为简单。而百度在PaddlePaddle上的 Deepspeech2 实现功能却很强大,因此就做了一次大自然的搬运工把框架转为tensorflow….
文章目录 # -*- coding:utf-8 -*- # /usr/bin/python import torch import torchaudio import matplotlib.pyplot as plt '''1.读数据''' filename = "爱江山更爱美人.wav" waveform, sample_rate = torchaudio.load(filename) print("Shape of waveform: {}".format(waveform.size())) pri
说明:本文适合信号处理方面有一定的基础的人阅读,能够理解什么时候傅里叶级数和傅里叶变换,能够理解他们的核心思想以及基本原理,能够理解到底什么是“频率域”,能够从频率的角度分析信号。
机器之心报道 编辑:袁铭怿、杜伟 除了生成图像,Stable Diffusion玩音乐也不在话下。 你听说过 Stable Diffusion 吧?它是一个从文本生成图像的开源人工智能模型,可以生成「骑马的宇航员」。 现在,Stable Diffusion 模型经过调试可以生成声谱图了,如下动图中的放克低音与爵士萨克斯独奏。 更神奇的是,这个声谱图可以转换成音频片段。 这就是今天要介绍的 Riffusion 模型,它是由 Seth Forsgren 和 Hayk Martiros 出于个人爱好而创建一个
先抛出结论: 补 1 次零相当于在原始频谱图中每两个频率之间插入1个频率值,补 2 次零相当于在原始频谱图中每两个频率之间插入 2 个频率值,并且原始频率值的位置及其幅值保持不变。因此, 补零会使频谱图中的频率点的数量增加,从而使得频谱图更加的光滑连续,但是补零不能对频谱图中的频率分辨率、频率值以及幅值有所改善。
X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N)
这里该包的安装我直接附上我们师姐写过的一篇文章,里边的介绍很详细: 戳这里!!!跳转到文章链接地址
说话的声音(声带震动)和其他声音相比,有独特的时域和频域模式。声带的震动产生基频(fundamental frequency),口腔共振(the pharyngeal and oral resonance cavities)等产生高频谐波
就机器学习而言,音频本身是一个有广泛应用的完整的领域,包括语音识别、音乐分类和声音事件检测等等。传统上音频分类一直使用谱图分析和隐马尔可夫模型等方法,这些方法已被证明是有效的,但也有其局限性。近期VIT已经成为音频任务的一个有前途的替代品,OpenAI的Whisper就是一个很好的例子。本文中,我们将利用ViT - Vision Transformer的是一个Pytorch实现在音频分类数据集GTZAN数据集-音乐类型分类上训练它。
来源:Deephub Imba 本文约2000字,建议阅读5分钟 本文中,我们将利用ViT - Vision Transformer的是一个Pytorch实现在音频分类数据集GTZAN数据集-音乐类型分类上训练它。 就机器学习而言,音频本身是一个有广泛应用的完整的领域,包括语音识别、音乐分类和声音事件检测等等。传统上音频分类一直使用谱图分析和隐马尔可夫模型等方法,这些方法已被证明是有效的,但也有其局限性。近期VIT已经成为音频任务的一个有前途的替代品,OpenAI的Whisper就是一个很好的例子。本文中,
就机器学习而言,音频本身是一个有广泛应用的完整的领域,包括语音识别、音乐分类和声音事件检测等等。传统上音频分类一直使用谱图分析和隐马尔可夫模型等方法,这些方法已被证明是有效的,但也有其局限性。近期VIT已经成为音频任务的一个有前途的替代品,OpenAI的Whisper就是一个很好的例子。
选自Medium 作者:Leon Fedden 机器之心编译 参与:Nurhachu Null、刘晓坤 这篇文章基于 GitHub 中探索音频数据集的项目。本文列举并对比了一些有趣的算法,例如 Wavenet、UMAP、t-SNE、MFCCs 以及 PCA。此外,本文还展示了如何在 Python 中使用 Librosa 和 Tensorflow 来实现它们,并用 HTML、Javascript 和 CCS 展示可视化结果。 Jupyter Notebook:https://gist.github.com/f
选自Google Blog 作者:Jonathan Shen、Ruoming Pang 机器之心编译 参与:黄小天、刘晓坤 近日,谷歌在其官方博客上推出了新的语音合成系统 Tacotron 2,包括一个循环序列到序列特征预测网络和一个改良的 WaveNet 模型。Tacotron 2 是在过去研究成果 Tacotron 和 WaveNet 上的进一步提升,可直接从文本中生成类人语音,相较于专业录音水准的 MOS 值 4.58,Tacotron 2 取得了 4.53 的 MOS 值。虽然结果不错,但仍有一些问
生成模型,特别是条件扩散模型,使我们能够模拟高度丰富和复杂的分布,甚至是以文本为条件的真实图像分布。这种能力使许多以前不可能实现的应用成为可能,例如以文本为条件生成任意、多样且逼真的图像内容。在这些图像模型取得成功之后,最近的研究表明,其他领域的建模,如视频和三维几何领域,也同样适用于下游应用。
神经振荡可能对脑成熟方面如髓鞘化和突触密度变化敏感。更好地确定发育轨迹和可靠性对于理解典型和不典型神经发育是必要的。在这里,我们在2.25年中对110名正常发育的儿童和青少年(9 ~ 17岁)中检验了信度。利用10 min静息态脑磁图数据,计算归一化源谱功率和组内相关系数。我们发现了全局归一化功率的性别特异性差异,男性显示出与年龄相关的delta和theta降低,以及与年龄相关的beta和gamma增加。女性的显著年龄相关变化较少。结构磁共振成像显示,男性灰质总量、皮质下灰质、皮质白质体积较大。总灰质体积有显著的年龄相关变化,与性别特异性和频率特异性相关的归一化功率。在男性中,总灰质体积的增加与theta和alpha的增加以及gamma的减少相关。测试-重测可靠性在所有频带和源区域都很好。重测信度范围从好(alpha)到一般(theta)到差(其余波段)。虽然成人的静息态神经振荡可以具有类似指纹的质量,但我们在这里表明,由于大脑的成熟和神经发育的变化,儿童和青少年的神经振荡继续进化。
众所周知,基于领先的声音事件定位和检测技术,可以研发“声学照相机”和“工业听诊器”等产品,并在电力、水利、轨道交通、汽车制造等行业领域发挥效用,保证工作人员的安全以及节省成本。声学照相机可以利用高精度麦克风阵列技术定位声源位置,再配合摄像头,实现可以直接在设备上看到声源位置,方便工作人员的日常设备检修。利用声音定位和检测技术,可以设计工业质检系统实现实时检测设备声音,避免设备故障导致生产中断,还可通过声音监测产品质量,避免不良品流向市场。
数字信号处理课设,我们使用MATLAB对语音信号进行了一系列处理,并将其所有功能集中于下图界面中:
断断续续写了一个多星期,期间找了很多同学讨论学习,感谢指导过点拨过我的同学们,为了精益求精本着不糊弄别人也不糊弄自己的原则在本文中探讨了很多细节。
随着计算机学科与人工智能的发展和应用,视频分析技术迅速兴起并得到了广泛关注。视频分析中的一个核心就是人体行为识别,行为识别的准确性和快速性将直接影响视频分析系统后续工作的结果。因此,如何提高视频中人体行为识别的准确性和快速性,已成为视频分析系统研究中的重点问题。
机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 2 期进行连载,共介绍 19 个在语音合成任务上曾取得 SOTA 的经典模型。 第 1 期:BLSTM-RNN、WaveNet、SampleRNN、Char2Wav
向量空间模型 向量空间模型是一个把文本文件表示为标识符(比如索引)向量的代数模型,它应用于信息过滤、信息检索、索引以及相关排序。 1 定义 文档和查询都用向量来表示: 每一维都对应于一个个别的词组。如
厌倦了Alexa沉稳,单调的语调?现在,由于一种新的AI技术,亚马逊可能很快就能够将新的讲话风格推广到其语音助手。
ATFNet是一个深度学习模型,它结合了时间域和频域模块来捕获时间序列数据中的依赖关系。引入了一种新的加权机制来调整周期性的权重,增强了离散傅立叶变换,并包括一个复杂关系识别的注意力机制,在长期时间序列预测中优于当前方法(每个模型都这么说)。这是4月发布在arxiv上的论文,还包含了源代码。
以上六步中,前两步跟单点响应谱分析一样,后四步将在下面作详细讲解。Ansys/Professional产品中不能进展随机振动分析。
近年来,图神经网络掀起了将深度学习方法应用于图数据分析的浪潮。不过其作为一门古老的认识世界的方法论,人们对于图数据表征技术的研究从很早以前就开始了。
在过去的几十年中,大量的fMRI研究已经表明自发性大脑活动以特定脑区信号之间的同步化增强为特点,而这些在静息状态下表现出活动信号同步化增强的脑区称之为静息态网络(resting-state networks,RSN)。其中一个研究最多的RSN是默认网络(default-mode network,DMN),其在静息状态下的激活程度最高。DMN主要包括后扣带回(posterior cingulate cortex, PCC)、内侧前额叶、内侧颞叶(medial temporal lobe,MTL)和顶叶下回。
作者 | 李通旭,刘乐 责编 | 何永灿 “声纹”作为一种典型的行为特征,相比其他生理特征在远程身份认证中具有先天的优势,文章介绍了声密保在远程身份认证中的应用,解析了一些在声纹识别准确率、时变问题和噪音问题等方面的技术难点和工程解决经验,最后针对远程身份认证的安全性问题,分享了得意音通在防录音闯入上的最新研究成果。希望对广大读者有所帮助。 声纹在远程身份认证中的应用 网络安全面临重大挑战 无线互联网以及智能手机的迅速发展,给人们日常生活带来极大便利的同时也带来了不容忽视的安全隐患,如何准确、迅速、安全地
时域卷积=频域乘积,卷积神经网络大部分的计算也在卷积部分,如何从频域的角度思考卷积神经网络,如何从频域的角度解释ResNet。
卷积神经网络(CNN)在卷积(权重共享和局部连接)和池化(平移等变)方面的强大能力,让其已经成为了现今计算机视觉领域的主导技术。但最近,Transformer 架构已经开始在图像和视频识别任务上与 CNN 比肩。其中尤其值得一提的是视觉 Transformer(ViT)。这种技术会将图像作为 token 序列(类似于自然语言中的词)来解读。Dosovitskiy et al. 的研究表明,ViT 在 ImageNet 基准上能以更低的计算成本取得相当的分类准确度。不同于 CNN 中的局部连接性,ViT 依赖于在全局背景中考虑的表征,其中每个 patch 都必须与同一图像的所有 patch 都关联处理。
领取专属 10元无门槛券
手把手带您无忧上云