首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从Mel谱图中计算“归一化”频率?

从Mel谱图中计算归一化频率的方法如下:

  1. 首先,了解Mel谱图的概念。Mel谱图是一种将音频信号转换为频谱表示的方法,它使用Mel滤波器组对音频信号进行滤波,并计算每个滤波器输出的能量。Mel谱图通常用于语音识别、音频特征提取等任务。
  2. 理解归一化频率的概念。归一化频率是指将频率值映射到特定范围内的过程,常用于将频率值转换为相对值或标准化值,以便进行比较或分析。
  3. 在计算归一化频率之前,需要先将Mel谱图转换为线性频谱图。这可以通过应用反变换来实现,常用的反变换方法包括Mel频率倒谱系数(MFCC)和Mel频率倒谱系数(MFB)。
  4. 一旦获得线性频谱图,可以使用以下公式计算归一化频率:
  5. 归一化频率 = 线性频率 / (采样率 / 2)
  6. 其中,线性频率是指在频谱图中的频率值,采样率是指音频信号的采样率。
  7. 根据计算得到的归一化频率,可以进行进一步的分析和处理。例如,可以将归一化频率用于音频信号的分类、特征提取、语音识别等任务。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云音视频处理服务:https://cloud.tencent.com/product/mps
  • 腾讯云人工智能服务:https://cloud.tencent.com/product/ai
  • 腾讯云物联网平台:https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发平台:https://cloud.tencent.com/product/mpe
  • 腾讯云对象存储服务:https://cloud.tencent.com/product/cos
  • 腾讯云区块链服务:https://cloud.tencent.com/product/baas
  • 腾讯云元宇宙服务:https://cloud.tencent.com/product/vr
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 声音处理之-梅尔频率倒谱系数(MFCC)

    在语音识别(SpeechRecognition)和话者识别(SpeakerRecognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。

    02

    使用 FastAI 和即时频率变换进行音频分类

    目前深度学习模型能处理许多不同类型的问题,对于一些教程或框架用图像分类举例是一种流行的做法,常常作为类似“hello, world” 那样的引例。FastAI 是一个构建在 PyTorch 之上的高级库,用这个库进行图像分类非常容易,其中有一个仅用四行代码就可训练精准模型的例子。随着v1版的发布,该版本中带有一个data_block的API,它允许用户灵活地简化数据加载过程。今年夏天我参加了Kaggle举办的Freesound General-Purpose Audio Tagging 竞赛,后来我决定调整其中一些代码,利用fastai的便利做音频分类。本文将简要介绍如何用Python处理音频文件,然后给出创建频谱图像(spectrogram images)的一些背景知识,示范一下如何在事先不生成图像的情况下使用预训练图像模型。

    04

    儿童和青少年静息态MEG振荡活动的发展轨迹:一项纵向研究

    神经振荡可能对脑成熟方面如髓鞘化和突触密度变化敏感。更好地确定发育轨迹和可靠性对于理解典型和不典型神经发育是必要的。在这里,我们在2.25年中对110名正常发育的儿童和青少年(9 ~ 17岁)中检验了信度。利用10 min静息态脑磁图数据,计算归一化源谱功率和组内相关系数。我们发现了全局归一化功率的性别特异性差异,男性显示出与年龄相关的delta和theta降低,以及与年龄相关的beta和gamma增加。女性的显著年龄相关变化较少。结构磁共振成像显示,男性灰质总量、皮质下灰质、皮质白质体积较大。总灰质体积有显著的年龄相关变化,与性别特异性和频率特异性相关的归一化功率。在男性中,总灰质体积的增加与theta和alpha的增加以及gamma的减少相关。测试-重测可靠性在所有频带和源区域都很好。重测信度范围从好(alpha)到一般(theta)到差(其余波段)。虽然成人的静息态神经振荡可以具有类似指纹的质量,但我们在这里表明,由于大脑的成熟和神经发育的变化,儿童和青少年的神经振荡继续进化。

    02
    领券