从torchvision.datasets.CIFAR10中仅提取类的子集可以通过以下步骤实现:
import torch
import torchvision
classes = ['cat', 'dog']
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True)
train_subset = torch.utils.data.Subset(trainset, [i for i in range(len(trainset)) if trainset.targets[i] in classes])
test_subset = torch.utils.data.Subset(testset, [i for i in range(len(testset)) if testset.targets[i] in classes])
transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_subset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_subset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(train_subset, batch_size=64, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(test_subset, batch_size=64, shuffle=False, num_workers=2)
通过上述步骤,你可以从torchvision.datasets.CIFAR10中仅提取指定类的子集,并进行后续的数据处理和加载操作。这样可以方便地针对特定类别进行模型训练和评估。
腾讯云相关产品和产品介绍链接地址:
领取专属 10元无门槛券
手把手带您无忧上云