背景介绍 DataFrames和Series是用于数据存储的pandas中的两个主要对象类型:DataFrame就像一个表,表的每一列都称为Series。您通常会选择一个系列来分析或操纵它。...今天我们将学习如何重命名Pandas DataFrame中的列名。 ? 入门示例 ? ? ? ?...上述代码: # ## 如何重命名pandas dataframe中的列名字 # In[32]: import pandas as pd # In[33]: data = pd.read_csv('ufo.csv...') # ## 查看data的类型 # In[34]: type(data) # ## 显示前几条数据 # In[35]: data.head() # ## 打印所有的列名 # In[36]: data.columns...reported',\ 'state', 'time'] # In[40]: data.columns = data_cols # In[41]: data.head() # ## 读取数据时指定列名
前言 Pandas库是Python中最流行的数据操作库。受到R语言的frames启发,它提供了一种通过其data-frame API操作数据的简单方法。...02 Numpy的Pandas-高效的Pandas 您经常听到的抱怨之一是Python很慢,或者难以处理大量数据。通常情况下,这是由于编写的代码的效率很低造成的。...原生Python代码确实比编译后的代码要慢。不过,像Pandas这样的库提供了一个用于编译代码的python接口,并且知道如何正确使用这个接口。...03 通过DTYPES高效地存储数据 当通过read_csv、read_excel或其他数据帧读取函数将数据帧加载到内存中时,pandas会进行类型推断,这可能是低效的。...04 处理带有块的大型数据集 pandas允许按块(chunk)加载数据帧中的数据。因此,可以将数据帧作为迭代器处理,并且能够处理大于可用内存的数据帧。 ?
数据透视表将每一列数据作为输入,输出将数据不断细分成多个维度累计信息的二维数据表。...在实际数据处理过程中,数据透视表使用频率相对较高,今天云朵君就和大家一起学习pandas数据透视表与逆透视的使用方法。...数据基本情况 groupby数据透视表 使用 pandas.DataFrame.groupby 函数,其原理如下图所示。...如果原表有二级索引,那么unstack就会将二级索引作为新的列名,一级索引作为新的索引。...默认聚合所有数值列 index 用于分组的列名或其他分组键,出现在结果透视表的行 columns 用于分组的列名或其他分组键,出现在结果透视表的列 aggfunc 聚合函数或函数列表,默认为'mean'
(不要创建新对象) 如何重置索引 ?...的合并操作 如何将新⾏追加到pandas DataFrame?...十、数据透视表应用 透视表是⼀种可以对数据动态排布并且分类汇总的表格格式,在pandas中它被称作pivot_table。...透视表是一种强大的数据分析工具,它可以快速地对大量数据进行汇总、分析和呈现。 ...'上海', '北京', '上海'], '销售额': [100, 200, 150, 250]} df = pd.DataFrame(data) # 使用pivot_table方法创建数据透视表
在当今这个大数据的时代,数据分析已经成为了我们日常生活和工作中不可或缺的一部分。Python作为一种高效、简洁且易于学习的编程语言,在数据分析领域展现出了强大的实力。...数据透视表 pivot()的用途就是,将一个dataframe的记录数据整合成表格(类似Excel中的数据透视表功能),pivot_table函数可以产生类似于excel数据透视表的结果,相当的直观。..., margins=False, dropna=True) 参数说明: data =原始数据,要应用透视表的数据框; index=用于分组的列名或其他分组键,出现在结果透视表的行; columns...关键技术:在pandas中透视表操作由pivot_table()函数实现,其中在所有参数中,values、index、 columns最为关键,它们分别对应Excel透视表中的值、行、列。...程序代码如下所示: 4.2.交叉表 交叉表采用crosstab函数,可是说是透视表的一部分,是参数aggfunc=count情况下的透视表。
经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: 而数据透视表可以快速抽取有用的信息: pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...values:需要汇总计算的列,可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,作为结果...它们分别对应excel透视表中的值、行、列: 参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: 如何使用pivot_table?
什么是透视表? 经常做报表的小伙伴对数据透视表应该不陌生,在excel中利用透视表可以快速地进行分类汇总,自由组合字段聚合计算,而这些只需要拖拉拽就能实现。...透视表是一种汇总了更广泛表数据的统计信息表。 典型的数据格式是扁平的,只包含行和列,不方便总结信息: ? 而数据透视表可以快速抽取有用的信息: ? pandas也有透视表?...pandas作为编程领域最强大的数据分析工具之一,自然也有透视表的功能。 在pandas中,透视表操作由pivot_table()函数实现,不要小看只是一个函数,但却可以玩转数据表,解决大麻烦。...values:需要汇总计算的列,可多选 index:行分组键,一般是用于分组的列名或其他分组键,作为结果DataFrame的行索引 columns:列分组键,一般是用于分组的列名或其他分组键,作为结果...参数aggfunc对应excel透视表中的值汇总方式,但比excel的聚合方式更丰富: ? 如何使用pivot_table? 下面拿数据练一练,示例数据表如下: ?
Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...你可以把它想象成一个电子表格或SQL表,或者 Series 对象的字典。它一般是最常用的pandas对象。 ? ?...15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ? 16、透视表 透视表是pandas的一个强大的操作,大量的参数完全能满足你个性化的需求。 ?...19、数据合并 两个DataFrame的合并,pandas会自动按照索引对齐,可以指定两个DataFrame的对齐方式,如内连接外连接等,也可以指定对齐的索引列。 ?...20、更改列名(columns index) 更改列名我认为pandas并不是很方便,但我也没有想到一个好的方案。 ?
大多数数据科学家可能会赞扬Pandas进行数据准备的能力,但许多人可能无法利用所有这些能力。...操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...作为另一个示例,当级别设置为0(第一个索引级别)时,其中的值将成为列,而随后的索引级别(第二个索引级别)将成为转换后的DataFrame的索引。 ?...例如,考虑使用pandas.concat([df1,df2])串联的具有相同列名的 两个DataFrame df1 和 df2 : ?
本篇博文主要是对之前的几篇关于pandas使用技巧的小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定的数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...透视表使用 ---- 创建数据 S型数据 import numpy as np import pandas as pd pd.Series([1, 3, 5, np.nan, 6, 89]) #...) 合并:最终结果是个S型数据 如何找出每一种职业的平均年龄?...,AB由行索引变成列属性 透视表 data: a DataFrame object,要应用透视表的数据框 values: a column or a list of columns to aggregate...values是生成的透视表中的数据 index是透视表的层次化索引,多个属性使用列表的形式 columns是生成透视表的列属性
如果你是excel用户,那么可能已经熟悉数据透视表的概念。Pandas 数据透视表的工作方式与 Excel 等电子表格工具中的数据透视表非常相似。...数据透视表函数接受一个df,一些参数详细说明了您希望数据采用的形状,并且输出是以数据透视表的形式汇总数据。 在下面的文章中,我将通过代码示例简要介绍 Pandas 数据透视表工具。...索引指定行级分组,列指定列级分组和值,这些值是您要汇总的数值。 用于创建上述数据透视表的代码如下所示。在 pivot_table 函数中,我们指定要汇总的df,然后是值、索引和列的列名。...数据透视表可与 Pandas 绘图功能结合使用,以创建有用的数据可视化。...我们可以使用另一种 Pandas 方法,称为样式方法,使表格看起来更漂亮,更容易从中得出见解。下面的代码为此数据透视表中使用的每个值添加了适当的格式和度量单位。
data.head() 我们使用pandas这个包来进行数据分析之前,需要先将Excel表格读入内存中,head方法可以显示前几行(默认是5行): Excel表格中的第一行自动作为列名(也成为列索引...,这是行索引。通过行索引可以找到对应的行,通过列名也可以找到对应的列,下面会有使用。 类似head方法的,还有一个tail方法,用来查看表格数据的最后几行。...分组统计 分组统计有两种方式可以用,一种是分组(groupby),另一种是透视表。 我们在做数据分析时,分组统计是最基础的操作之一。...有了及格和不及格字段,类似Excel表格中的透视表功能,pandas也有透视表函数: 所谓透视表,涉及到的重要参数有:列字段(columns),行字段(index),值字段(values),还有就是值字段的计算函数...Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。
Pandas 透视表概述 数据透视表(Pivot Table)是一种交互式的表,可以进行某些计算,如求和与计数等。所进行的计算与数据跟数据透视表中的排列有关。...之所以称为数据透视表,是因为可以动态地改变它们的版面布置,以便按照不同方式分析数据,也可以重新安排行号、列标和页字段。每一次改变版面布置时,数据透视表会立即按照新的布置重新计算数据。...另外,如果原始数据发生更改,则可以更新数据透视表。...:dataframe.pivot_table() index:行索引,传入原始数据的列名 columns:列索引,传入原始数据的列名 values: 要做聚合操作的列名 aggfunc:聚合函数 custom_info.pivot_table... 分组之后得到的是multiIndex类型的索引,将multiIndex索引变成普通索引 custom_info.groupby(['注册年月','会员等级'])['会员卡号'].count().reset_index
数据透视表(Pivot Table)是常用的数据汇总工具,可以通过控制数据的排列灵活地进行数据分析,进而挖掘出数据中最有价值的信息。掌握数据透视表,已经成为数据分析从业者必备的一项技能。...在python中我们可以通过pandas.pivot_table函数来实现数据透视表的功能。...本篇文章介绍了pandas.pivot_table具体的使用方法,在最后还准备了一个备忘单,希望能够帮助你记住如何使用pandas的pivot_table。 1...."pclass"后,现在透视表具有二层行级索引,一层列级索引。...保存透视表 数据分析的劳动成果最后当然要保存下来了,我们一般将透视表保存为excel格式的文件,如果需要保存多个透视表,可以添加到多个sheet中进行保存。 save_file = ".
当工作场景中存在揉合了大量信息的原始数据表时,就可以使用数据透视表来快速获得有意义的数据洞察结果,为业务提供有价值的信息。 你的前端为何需要数据透视表?...在前端集成数据透视表:简要教程 使用SpreadJS,要建立一个如图所示的前端嵌入式数据透视表是非常简单的: 上图中的PivotLayout工作簿是数据透视表的页面,DataSource是原始数据页面...在数据透视表中,存在四个区域: Filters: 控制数据透视表的数据范围。 Columns: 控制数据透视表的列分布。 Rows: 控制数据透视表的行分布。...此外,数据透视表面板只是一个控制数据透视表的工具,它在使用fromJSON时会自动释放。 数据透视表可以在没有数据透视表面板的情况下工作。...所以数据透视表支持下面的api来处理面板和数据透视表之间的关系。
Excel数据透视表虽好,但在pandas面前它也有其不香的一面! ? 01 何为透视表 数据透视表,顾名思义,就是通过对数据执行一定的"透视",完成对复杂数据的分析统计功能,常常伴随降维的效果。...得到统计好的数据透视表结果 ?...至此,我们可以发现数据透视表中实际存在4个重要的设置项: 行字段 列字段 统计字段 统计方式(聚合函数) 值得指出的是,以上4个要素每一个都可以不唯一,例如可以拖动多个字段到行/列字段中形成二级索引,...02 利用pd.pivot_table实现 Pandas作为Python数据分析的瑞士军刀,实现个数据透视表自然不在话下,其接口函数为pivot_table,给出其核心参数如下: values : 待聚合的列名...index : 用于放入透视表结果中的行索引列名 columns : 用于放入透视表结果中列索引列名 aggfunc : 聚合统计函数,可以是单个函数,也可以是函数列表,还可以是字典格式,默认聚合函数为均值
但是身经百战的你肯定会觉得,前2篇例子中的数据太规范了,如果把数据导入到数据库还是可以方便解决问题的。 因此,本文将使用稍微复杂的数据做演示,充分说明 pandas 是如何灵活处理各种数据。...---- 处理标题 pandas 的 DataFrame 最大的好处是,我们可以使用列名字操作数据,这样子就无需担心列的位置变化。因此需要把标题处理好。...我们平时操作 DataFrame 就是通过这两个玩意去定位里面的数据。 如果你熟悉 excel 中的透视表,那么完全可以把行列索引当作是透视表中的行列区域。...---- 理解了索引,那么就要说一下如何变换行列索引。 pandas 中通过 stack 方法,可以把需要的列索引转成行索引。 用上面的数据作为例子,我们需要左边的行索引显示每天上下午的气温和降雨量。...如下图: 不妨在 excel 的透视表上操作一下,把一个放入列区域的字段移到行区域上,就是上图的结果。 ---- ---- 回到我们的例子。
数据透视表 (1)pivot_table()方法 (2)交叉表crosstab ---- 统计师的Python日记【第10天:数据聚合】 前言 根据我的Python学习计划: Numpy → Pandas...这是一个典型的数据聚合的例子,现在如果想用Pandas来实现,应该如何处理? 1. 聚合运算 (1)groupby:按照变量进行分组 要实现这个目的,使用 groupby 语句即可。...如果索引是字符串,还可以有更多玩法,比如数据是这样的: ? 索引是每个人的名字,那么现在可以对名字的占位长度进行GroupBy: ? 好吧,暂时就想到这么多。...数据透视表 在第5天的日记中,提到过“数据透视表”(第5天:Pandas,露两手): ?...现在看来,这个unstack()完全不能算“透视表”,因为今天要学pivot_table()方法和pandas.pivot_table()方法。
使数据集成为宽格式 宽格式数据结构是指各组多元时间序列数据按照相同的时间索引横向附加,接着我们将按商店和时间来透视每周的商店销售额。...storewide.loc[:,1:10] # Plot only Store 1 - 10 # 绘制数据透视表 storewide.plot(figsize=(12, 4)) plt.legend(loc...print(storewide.index) 除了每周商店销售额外,还可以对其他任何列进行同样的长格式到宽格式的转换。 Darts Darts 库是如何处理长表和宽表数据集的?...可以展开小图标查看组件,组件指的是列名。 Darts--绘图 如何使用 Darts 绘制曲线? 绘图语法与 Pandas 中的一样简单。...在沃尔玛商店的销售数据中,包含了时间戳、每周销售额和商店 ID 这三个关键信息。因此,我们需要在输出数据表中创建三列:时间戳、目标值和索引。
然而,如果要将数据框架从长格式转换为宽格式呢?如下图1所示。 图1 可以使用pandas的pivot()方法。下面通过一个简单的示例演示如何使用它。...对于经常使用Excel的用户来说,马上就知道可以通过使用透视表函数来实现这一点。基本上,将country列放在“行”中,将Month放在“列”中,然后将Sales作为“价值”放入表中。...这里的好消息是,pandas中也有一个pivot函数。 下面的代码将创建一个“长”表单数据框架,看起来像上图1中左侧的表。...这是新数据框架的索引,相当于Excel数据透视表的“行”。 columns:字符串,或字符串值列表。这是新数据框架的列,相当于Excel数据透视表的“列”。 values:字符串,或字符串值列表。...用于新数据框架列填充的值,相当于Excel数据透视表的“值”。 现在来实现数据格式的转换。注意,下面两行代码将返回相同的结果。然而,首选第二行代码,因为它更明确地说明了参数的用途。
领取专属 10元无门槛券
手把手带您无忧上云