众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
英文: Anton Shaleynikov 译文:葡萄城控件 www.cnblogs.com/powertoolsteam/p/top-9-javascript-charting-libraries.html 当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员
当前,数据可视化已经成为数据科学领域非常重要的一部分。不同网络系统中产生的数据,都需要经过适当的可视化处理,以便更好的呈现给用户读取和分析。 对任何一个组织来说,如果能够充分的获取数据、可视化数据和分析数据,那么就能很大程度上帮助了解数据产生的深层次原因,以便据此做出正确的决定。 对于前端开发人员来说,如果能够掌握交互式网页中的数据可视化技术,则是一项很棒的技能。当然,通过一些 JavaScript 的图表库也会使前端的数据可视化变得更加容易。使用这些库,开发者可以在无需考虑不同的语法所带来的编程难题的情况
以下是一个示例,展示了如何使用 Chart.js 在 Vue 中创建一个简单的折线图:
vue-chartjs 是 Vue 对于 Chart.js 的封装. 你可以很简单的创建可复用的图表组件.
点击上方蓝色字体,关注程序员zhenguo 你好,我是 zhenguo今天这篇文章不是项目,我的第十个项目还在整理中。今天我参考github,总结出一个极简但却包括了几乎所有Python的绘图包。一共22个Python绘图包: Python 绘图包 altair - 基于Vega Lite的声明性统计可视化 bokeh - 用于Python的交互式Web绘图 Chartify - Bokeh包装,使数据科学家更容易创建图表 diagram - 使用UTF-8字符的文本模式图 ggplot - 基于R的绘图
Chart.js 是一个功能强大且易于使用的图表库。 支持多种类型的图表,包括折线图、柱状图、饼图、雷达图等。 Chart.js 具有简单的 API 和丰富的配置选项, 使得在 Vue 中使用它非常方便。
github:https://github.com/jtblin/angular-chart.js 官方网站:http://jtblin.github.io/angular-chart.js/
Chart.js 是一个简单而灵活的 JavaScript 图表库,适用于设计师和开发者。
你的程序有多么依赖数据?即使应用程序不完全面向业务,你也可能需要管理面板、仪表板、性能跟踪以及用户非常喜欢的类似分析功能的数据。
每天上班必须做的一件事情,就是打开我们全球最大的程序员交友社区GitHub,因为这上面有太多开源的宝贝了,每天都乐此不疲,深耕于此,当然也收获了很多有用的东西,写出来分享一下。
在这篇文章中,我向大家介绍前5名最好的开源JavaScript图表库。每个站点的仪表板都是不完整的,因为他们缺少图表,所以为我们的站点找到正确的图表库是非常重要的。以下库可以帮助你在站点创建可自定义和美观的图表。 D3.js - 数据驱动的文档 D3.js是一个开源的JavaScript库,用于根据用户数据处理文档。这是一个强大的工具,通过HTML,SVG和CSS的帮助,赋予数据生命。 D3允许开发人员将任意数据绑定到DOM,然后将数据驱动的转换应用到DOM。例如:考虑一个数组数组,您可以使用它来生成一
今天我参考github,总结出一个极简但却包括了几乎所有Python的绘图包。 一共22个Python绘图包: Python 绘图包 altair - 基于Vega Lite的声明性统计可视化 bokeh - 用于Python的交互式Web绘图 Chartify - Bokeh包装,使数据科学家更容易创建图表 diagram - 使用UTF-8字符的文本模式图 ggplot - 基于R的绘图系统ggplot2 glumpy - OpenGL科学可视化库 holoviews - 来自注释数据的复杂和声明性
无论您是刚开始编码之旅还是想提升技能,作为开发者学习和成长的最佳方式之一就是在GitHub等平台上探索开源代码库。
Chart.js是一个很酷的开源JavaScript库,可帮助您呈现精美的HTML5图表。它可以自动适应屏幕大小,并且可以统计8种不同的图表类型。在本教程中,我们将探讨如何使Django与Chart.js对话以及如何基于从我们的模型中提取的数据来呈现一些简单的图表。
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
star:91.5k 官网:https://d3js.org/ GitHub地址:https://github.com/mbostock/d3
完全前端基本功能之后,接下来,我们来构建这个 PHP 博客项目后台管理系统,主要包含登录认证,仪表盘页面,专辑、文章的创建、修改和删除,以及消息后台查看等功能。最终后台界面效果图如下(依次是专辑列表页、发布文章页、消息列表页):
图表对于数据的可视化和网站的吸引力非常重要。可视化演示使得分析大块数据和传达信息变得更加容易。 图表库使您能够以一种令人惊叹的、易于理解的和交互式的方式可视化数据,并改进您的网站设计。
要在 Chart.js 的折线图上添加动画效果,可以使用 Chart.js 提供的配置选项来实现。以下是一个示例,展示了如何在折线图上添加简单的动画效果:
Ionic 2 实例开发 今日更新新增章节——Ionic 2 中添加图表: Chart.js是一个在HTML5的<canvas>元素中绘制图标的JavaScript库,非常适合于HTML5的移动应用
BlazorChartjs是一个在Blazor中使用Chart.js的库(支持Blazor WebAssembly和Blazor Server两种模式),它提供了简单易用的组件来帮助开发者快速集成数据可视化图表到他们的 Blazor 应用程序中。本文我们将一起来学习一下在Blazor中使用Chart.js快速创建图表。
当然,还有很多其它基于.NET Core开发的开源数据可视化项目,这里再列出一些:
1. D3 Stars: 46561, Forks: 12465 D3 是一个JavaScript数据可视化库用于HTML和SVG。它旨在将数据带入生活,强调Web标准,将强大的可视化技术与数据驱动的
随着数据收集和使用持续呈指数级增长,对这些数据进行可视化的需求变得越来越重要。开发人员寻求将数百万个数据库记录整合到美丽的图表和仪表板中,人类可以快速直观地解释这些记录。
曾经写了一个web app,后端没有用数据库,而是文件系统,体验还不错,文件系统的索引也很快,有时候一个网站不需要什么SQL。
专家与普通人的重要区别在于他们善于使用工具,留出更多的时间用于计划和思考。编写代码也是如此。有了合适的工具,你就有更多的时间来规划架构和攻克难关,更多的把精力放在业务实现上。今天,我将与大家分享最流行的几个常用且流行的 JavaScript 库。
在当今数字化世界中,数据是至关重要的资产,而网页则是一个巨大的数据源。JavaScript作为一种强大的前端编程语言,不仅能够为网页增添交互性,还可以用于网页爬取和数据处理。本文将带你深入探索JavaScript爬虫技术的进阶应用,从网页数据采集到数据可视化,揭示其中的奥秘与技巧。
为什么别人写代码又快又简洁?为什么别人任务完成的那么快,还有时间摸鱼,而我一个需求写一天,改改bug又两天?
对于首次写 React Hooks 的我,只能基于上面罗列的几个点,一步步完成改造。
1:文档全集:这里收集了Bootstrap从V1.0.0版本到现在,整个文档的历史。Bootstrap本身就是一个传奇,而这些文档就是传奇的见证! 官方网址:http://docs.bootcss.c
Matplotlib 的 Legend 图例就是为了帮助我们展示每个数据对应的图像名称,更好的让读者认识到你的数据结构。
在这篇文章中, 云朵君想介绍一个很酷的python手绘样式可视化包——可爱的图表 cutecharts。Cutecharts 非常适合为图表提供更个性化的触感。
Python有很多优秀的可视化库,其中有名的像matplotlib、seaborn、plotly,可以绘制出各式绚丽的图表。
由于自己现在无业游民,所以没有什么现成的环境,环境就随便找个公网的。再者当下的完成度应该算不上一个完整的 APP,但是作为参考,依瓢画葫芦绝对足够了,如果等完整产品,可能得等一段时间了,下面的是该项目
web前端开发人员经常会用到一些现成的js库(框架)。框架的使用增加了代码的模块化和可复用性,目前主流的js框架有很多,各有侧重,我们通常只会用到其中一小部分子功能,这里总结了2020年11个热门JavaScript 库。
http://www.bootcss.com/p/chart.js/docs/
Matplotlib默认主题下绘制的可视化图形如一位高贵冷艳、不沾烟火的冰山女神,而cutecharts的图就像不拘常规、潇洒无羁的活力少年。
图表库千万个今天 HelloGitHub 给大家推荐个很有“特色”的图表库:一个手绘风格的 JS 图表库 —— Chart.xkcd,快收起你紧绷、严肃的面容让我们一起看看用手绘风格展示数据的效果。
1.plotly: 2.R ggplot2: 3.无需编程语言的工具: 01. Tableau 03. Visual.ly 04. iCharts 4.基于JavaScript实现的
最近想扩展一下vnpy,优化一些功能和代码的性能。在看backtesting部分代码的时候,发现,vnpy其实回测功能挺弱的,可以自己扩展一下。随之而来的就是一个回测结果可视化的问题。vnpy原生的回测结果没有绘制k线,所以也就没有指标的可视化和开仓平仓的可视化,只有随后交易结果的可视化。笔者自己其实有点点不习惯,没有看到策略的可视化回测结果,有点点不开心,所以打算自己做一下。首先就是选择可视化的工具,pyecharts应该是一个首选了,而且现在发展的越来越好了。
✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 💂 作者主页: 【主页——🚀获取更多优质源码】 🎓 web前端期末大作业: 【📚毕设项目精品实战案例 (1000套) 】 🧡 程序员有趣的告白方式:【💌HTML七夕情人节表白网页制作 (110套) 】 🌎超炫酷的Echarts大屏可视化源码:【🔰 echarts大屏展示大数据平台可视化(150套) 】 🎁 免费且实用的WEB前端学习指南: 【📂web前端零基础到高级学习视频教程 120G干货分享】 🥇 关于作者: 历任研
领取专属 10元无门槛券
手把手带您无忧上云