首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《数学之美》拾遗——TF-IDF

    在学习机器学习的过程中,我写了简单易学的机器学习算法的专题,依然还有很多的算法会陆续写出来。网上已经有很多人分享过类似的材料,我只是通过自己的理解,想尽可能用一种通俗易懂的方式讲出来。在不断学习的过程中,陆陆续续补充了很多的知识点,在学习吴军老师的《数学之美》的过程中,也补充了很多我之前遗漏的知识点,吴军老师已经在《数学之美》上把问题讲得很清楚,我在这里只是再增加一些我对这些问题的认识。专题的顺序与原书不一致,其中的原因是我在学习机器学习的过程中遇到了问题会翻阅一些书,所以,顺序与我学习时遇到的问题是相关的。借此机会,感谢那些默默支持我的人,我会更加努力写出高质量的博文。

    02

    J. Phys. Chem. C | 基于自然语言处理的材料化学文本数据库

    今天为大家介绍的是来自Kamal Choudhary团队的一篇论文。在这项工作中,作者介绍了ChemNLP库,它可用于以下方面:(1)整理材料和化学文献的开放访问数据集,开发和比较传统机器学习、transformer和图神经网络模型,用于(2)对文本进行分类和聚类,(3)进行大规模文本挖掘的命名实体识别,(4)生成摘要以从摘要中生成文章标题,(5)通过标题生成文本以建议摘要,(6)与密度泛函理论数据集集成,以识别潜在的候选材料,如超导体,以及(7)开发用于文本和参考查询的网络界面。作者主要使用公开可用的arXiv和PubChem数据集,但这些工具也可以用于其他数据集。此外,随着新模型的开发,它们可以轻松集成到该库中。

    03

    大数据能力提升项目|学生成果展系列之九

    导读 为了发挥清华大学多学科优势,搭建跨学科交叉融合平台,创新跨学科交叉培养模式,培养具有大数据思维和应用创新的“π”型人才,由清华大学研究生院、清华大学大数据研究中心及相关院系共同设计组织的“清华大学大数据能力提升项目”开始实施并深受校内师生的认可。项目通过整合建设课程模块,形成了大数据思维与技能、跨界学习、实操应用相结合的大数据课程体系和线上线下混合式教学模式,显著提升了学生大数据分析能力和创新应用能力。 回首2022年,清华大学大数据能力提升项目取得了丰硕的成果,同学们将课程中学到的数据思维和技能成功

    03
    领券