首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

精通 Pandas 探索性分析:1~4 全

从 CSV 文件读取数据时使用高级选项 在本部分中,我们将 CSV 和 Pandas 结合使用,并学习如何使用read_csv方法读取 CSV 数据集以及高级选项。...) df.shape 从 Excel 文件读取数据 在本节中,我们将学习如何使用 Pandas 使用 Excel 数据来处理表格,以及如何使用 Pandas 的read_excel方法从 Excel 文件中读取数据...二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...由于它是 CSV 文件,因此我们正在使用 Pandas 的read_csv方法。 我们将文件名(以逗号作为分隔符)传递给read_csv方法,并从此数据中创建一个数据帧,我们将其命名为data。...我们收到的数据集是 CSV 文件的形式; 因此,我们将使用普通 Pandasread_csv方法。 我们需要传递文件名和逗号作为分隔符。

28.2K10

AI 技术讲座精选:如何利用 Python 读取数据科学中常见几种文件?

比如,一个以“CSV”格式保存的名为“Data”的文件下方的文件名会显示为“Data.csv”。...CSV 文件中的每一行都代表一份观察报告,或者也可以说是一条记录。每一个记录都包含一个或者更多由逗号分隔的字段。 有时你看你会遇到用制表符而非逗号来分隔字段的文件。...在 Python 中从 CSV 文件里读取数据 现在让我们看看如何在 Python 中读取一个 CSV 文件。你可以用 Python 中的“pandas”库来加载数据。...从 XLSX 文件读取数据 让我们一起来加载一下来自 XLSX 文件的数据并且定义一下相关工作表的名称。此时,你可以用 Python 中的“pandas”库来加载这些数据。...你可以使用 Python 中的“pandas”库来加载数据。

5.1K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用SQLAlchemy将Pandas DataFrames导出到SQLite

    一、概述 在进行探索性数据分析时 (例如,在使用pandas检查COVID-19数据时),通常会将CSV,XML或JSON等文件加载到 pandas DataFrame中。...本教程介绍了如何从CSV文件加载pandas DataFrame,如何从完整数据集中提取一些数据,然后使用SQLAlchemy将数据子集保存到SQLite数据库 。...从原始数据帧创建新的数据帧 我们可以使用pandas函数将单个国家/地区的所有数据行匹配countriesAndTerritories到与所选国家/地区匹配的列。...通过Navicat软件,打开save_pandas.db文件名的命令来访问数据库。然后,使用标准的SQL查询从Covid19表中获取所有记录。 ?...我们只是将数据从CSV导入到pandas DataFrame中,选择了该数据的一个子集,然后将其保存到关系数据库中。

    4.8K40

    Python pandas十分钟教程

    Pandas是数据处理和数据分析中最流行的Python库。本文将为大家介绍一些有用的Pandas信息,介绍如何使用Pandas的不同函数进行数据探索和操作。...包括如何导入数据集以及浏览,选择,清理,索引,合并和导出数据等常用操作的函数使用,这是一个很好的快速入门指南,如果你已经学习过pandas,那么这将是一个不错的复习。...,使用代码如下: pd.read_csv("Soils.csv") pd.read_excel("Soils.xlsx") 在括号内 "Soils.csv"是上传的数据文件名,一般如果数据文件不在当前工作路径...Concat适用于堆叠多个数据帧的行。...如果要将数据输出到由制表符分隔的csv文件,请使用以下代码。 '\t'表示您希望它以制表符分隔。

    9.8K50

    Python数据处理从零开始----第二章(pandas)⑦pandas读写csv文件(1)

    这一节我们将学习如何使用Python和Pandas中的逗号分隔(CSV)文件。 我们将概述如何使用Pandas将CSV加载到dataframe以及如何将dataframe写入CSV。...在第一部分中,我们将通过示例介绍如何读取CSV文件,如何从CSV读取特定列,如何读取多个CSV文件以及将它们组合到一个数据帧,以及最后如何转换数据 根据特定的数据类型(例如,使用Pandas read_csv...Pandas从文件导入CSV 在这个Pandas读取CSV教程的第一个例子中,我们将使用read_csv将CSV加载到与脚本位于同一目录中的数据帧。...image.png Pandas从URL读取CSV 在下一个read_csv示例中,我们将从URL读取相同的数据。...image.png index_col参数也可以以字符串作为输入,现在我们将使用不同的数据文件。 在下一个示例中,我们将CSV读入Pandas数据帧并使用idNum列作为索引。

    3.7K20

    python数据分析——数据分析的数据的导入和导出

    在该例中,首先通过pandas库的read_csv方法导入sales.csv文件的前10行数据,然后使用pandas库的to_csv方法将导入的数据输出为sales_new.csv文件。...对于pandas库的to_csv方法,有下列参数说明: path_or_buf:要保存的路径及文件名。 sep:分割符,默认为","。...2.2 xlsx格式数据输出 【例】对于上一小节中的问题,如销售文件格式为sales.xlsx文件,这种情况下该如何处理?...2.3导入到多个sheet页中 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx...解决该问题,首先在sales_new.xlsx文件中建立名为df1和df2的sheet页,然后使用pd.ExcelWriter方法打开sales_new.xlsx文件,再使用to_excel方法将数据导入到指定的

    18710

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    另外,你会学到如何从HTML文件中检索信息。...下面这小块代码读取了CSV和TSV格式的数据,存入pandas DataFrame数据结构,然后写回到磁盘上(read_csv.py文件): import pandas as pd # 读出数据的文件名...我们将(用于读和写的)文件名分别存于变量r_filenameCSV(TSV)和w_filenameCSV(TSV)。 使用pandas的read_csv(...)方法读取数据。...更多 这里介绍读写CSV、TSV文件最方便最快捷的方法。如果你不想把数据存于pandas的DataFrame数据结构,你可以使用csv模块。...本技法会介绍如何从网页获取数据。 1. 准备 要实践这个技巧,你要先装好pandas和re模块。re是Python的正则表达式模块,我们用它来清理列名。

    8.4K20

    python数据处理 tips

    在本文中,我将分享一些Python函数,它们可以帮助我们进行数据清理,特别是在以下方面: 删除未使用的列 删除重复项 数据映射 处理空数据 入门 我们将在这个项目中使用pandas,让我们安装包。...conda install pandas 我已经修改了著名的泰坦尼克号数据集从Kaggle演示的目的,你可以在这里下载数据集:https://github.com/chingjunetao/medium-article...import pandas as pd df = pd.read_csv("modified_titanic_data.csv") df.head() ?...df.head()将显示数据帧的前5行,使用此函数可以快速浏览数据集。 删除未使用的列 根据我们的样本,有一个无效/空的Unnamed:13列我们不需要。我们可以使用下面的函数删除它。...df["Age"].median用于计算数据的中位数,而fillna用于中位数替换缺失值。 现在你已经学会了如何用pandas清理Python中的数据。我希望这篇文章对你有用。

    4.4K30

    【DB笔试面试446】如何将文本文件或Excel中的数据导入数据库?

    至于EXCEL中的数据可以另存为csv文件(csv文件其实是逗号分隔的文本文件),然后导入到数据库中。 下面简单介绍一下SQL*Loader的使用方式。...txt或csv格式才能导入到数据库中。...参数 含义解释 userid Oracle用户名/口令 control 控制文件名 log 记录的日志文件名 bad 错误文件名,记录错误的未加载数据 data 数据文件名,data参数只能指定一个数据文件...② 采用DIRECT=TRUE导入可以跳过数据库的相关逻辑,直接将数据导入到数据文件中,可以提高导入数据的性能。 ③ 通过指定UNRECOVERABLE选项,可以写少量的日志,而从提高数据加载的性能。...下表给出了在使用SQL*Loader的过程中,经常会遇到的一些错误及其解决方法: 序号 报错 原因 解决 1 没有第二个定界字符串 csv文件中含有多个换行符 如果csv是单个换行符的话,那么加入OPTIONALLY

    4.6K20

    Python数据分析实战之数据获取三大招

    ---- 第二招 Pandas 库读取数据 在日常数据分析中,使用pandas读取数据文件更为常见。...Numpy读取数据方法与Pandas类似,其包括loadtxt, load, fromfile Methods Describe Return loadtxt 从txt文本中读取数据 从文件中读取的数组...load 使用numpy的load方法可以读取numpy专用的二进制数据文件,从npy, npz或pickled文件中加载数组或pickled对象 从数据文件中读取的数据、元祖、字典等 fromfile...使用numpy的fromfile方法可以读取简单的文本文件数据以及二进制数据 从文件中读取的数据 使用 loadtxt 方法读取数据文件 数据通常是一维或者二维的 语法 np.loadtxt( fname...使用 load 方法读取数据文件 使用numpy的load方法可以读取numpy专用的二进制数据文件,从npy, npz或pickled文件中加载数组或pickled对象, 该文件通常基于numpy的save

    6.1K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    事实上,数据根本不需要标记就可以放入 Pandas 结构中。...; 更加灵活地重塑、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。...如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。

    6.7K20

    Python数据分析实战之数据获取三大招

    ---- 第二招 Pandas 库读取数据 在日常数据分析中,使用pandas读取数据文件更为常见。...Numpy读取数据方法与Pandas类似,其包括loadtxt, load, fromfile Methods Describe Return loadtxt 从txt文本中读取数据 从文件中读取的数组...load 使用numpy的load方法可以读取numpy专用的二进制数据文件,从npy, npz或pickled文件中加载数组或pickled对象 从数据文件中读取的数据、元祖、字典等 fromfile...使用numpy的fromfile方法可以读取简单的文本文件数据以及二进制数据 从文件中读取的数据 使用 loadtxt 方法读取数据文件 数据通常是一维或者二维的 语法 np.loadtxt( fname...使用 load 方法读取数据文件 使用numpy的load方法可以读取numpy专用的二进制数据文件,从npy, npz或pickled文件中加载数组或pickled对象, 该文件通常基于numpy的save

    6.6K30

    使用Python进行ETL数据处理

    本文将介绍如何使用Python进行ETL数据处理的实战案例。 一、数据来源 本次实战案例的数据来源是一个包含销售数据的CSV文件,其中包括订单ID、产品名称、销售额、销售日期等信息。...文件大小为100MB,大约有100万条记录。我们需要从这个CSV文件中提取数据,并将其导入到MySQL数据库中。 二、数据提取 数据提取是ETL过程的第一步,我们需要从源数据中获取需要的数据。...在本次实战案例中,我们使用Python的pandas库来读取CSV文件,并将其转换为DataFrame对象,如下所示: import pandas as pd df = pd.read_csv('sales.csv...') 通过上述代码,我们成功将CSV文件转换为DataFrame对象,并可以使用pandas提供的各种方法进行数据处理和转换。...我们使用pandas库将CSV文件读取为DataFrame对象,并对其中的销售数据进行了一些处理和转换,然后使用pymysql库将转换后的数据插入到MySQL数据库中。

    1.6K20

    【Python篇】PyQt5 超详细教程——由入门到精通(中篇一)

    通过 setItem() 方法,我们将每条记录中的姓名和年龄填充到相应的行和列中。 6.4 使用 pandas 与 QTableWidget 在处理大量数据时,pandas 是一个非常强大的库。...接下来,我们演示如何使用 pandas 读取数据,并将其展示在 QTableWidget 中。...接下来我们将展示如何通过 QFileDialog 选择一个 CSV 文件,并使用 pandas 读取文件内容,最后将其展示在 QTableWidget 中。...6.6 总结 在这一部分中,我们学习了如何使用 QTableWidget 来展示表格数据,并结合 pandas 来处理和展示从外部文件读取的数据。...随后,我们重点讲解了 QTableWidget 控件及其与 pandas 的结合,展示了如何动态地从 CSV 文件或其他数据源加载并展示结构化数据。

    2K23

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    事实上,数据根本不需要标记就可以放入 Pandas 结构中。...; 更加灵活地重塑、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。...如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。

    7.5K30

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    事实上,数据根本不需要标记就可以放入 Pandas 结构中。...; 更加灵活地重塑、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件、数据库中加在数据,...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv 文件的情况下仍会完整地读取它。...如果一个未知的.csv 文件有 10GB,那么读取整个.csv 文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv 文件中导入几行,之后根据需要继续导入。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。

    6.3K10

    NumPy、Pandas中若干高效函数!

    事实上,数据根本不需要标记就可以放入Pandas结构中。...、转置(pivot)数据集; 轴的分级标记 (可能包含多个标记); 具有鲁棒性的IO工具,用于从平面文件 (CSV 和 delimited)、Excel文件、数据库中加在数据,以及从HDF5格式中保存...read_csv(nrows=n) 大多数人都会犯的一个错误是,在不需要.csv文件的情况下仍会完整地读取它。...如果一个未知的.csv文件有10GB,那么读取整个.csv文件将会非常不明智,不仅要占用大量内存,还会花很多时间。我们需要做的只是从.csv文件中导入几行,之后根据需要继续导入。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用copy ()函数。

    6.6K20

    如何用 Pandas 存取和交换数据?

    所以,在这个过程中,你大概率会经常遇到数据的交换问题。 有时候,是把分析结果存起来,下次读取回来继续使用。 更重要的时候,是把一个工具的分析结果导出,导入到另一个工具包中。...好了,下面我们分别赋予两句话情感标记,然后用 Pandas 构建数据框。...CSV/TSV 我们来看最常见的两种格式,分别是: csv :逗号分隔数据文本文件; tsv :制表符分隔数据文本文件; 先尝试把 Pandas 数据框导出为 csv 文件。...将生成的 csv 文件拖入文本编辑器内,效果如下: ? 你可以清楚地看到,逗号分割了表头和数据。 有意思的是,因为第一句评论里包含了换行符,所以就真的记录到两行上面。而文本的两端,有引号包裹。...df.to_csv('data.tsv', index=None, sep='\t') 生成的文件名为 data.tsv 。我们还是在编辑器里面打开它看看。 ?

    1.9K20

    pandas 入门2 :读取txt文件以及描述性分析

    本文主要会涉及到:读取txt文件,导出txt文件,选取top/bottom记录,描述性分析以及数据分组排序; ? 创建数据 该数据集将包括1,000个婴儿名称和该年度记录的出生人数(1880年)。...使用zip函数合并名称和出生数据集。 ? 我们基本上完成了创建数据集。我们现在将使用pandas库将此数据集导出到csv文件中。 df将是一个 DataFrame对象。...获取数据 要读取文本文件,我们将使用pandas函数read_csv。 ? 这就把我们带到了练习的第一个问题。该read_csv功能处理的第一条记录在文本文件中的头名。...我们已经知道有1,000条记录而且没有任何记录丢失(非空值)。可以验证“名称”列仍然只有五个唯一的名称。 可以使用数据帧的unique属性来查找“Names”列的所有唯一记录。 ?...由于每个姓名名称都有多个值,因此需要汇总这些数据,因此只会出现一次宝贝名称。这意味着1000行需要变为5.我们可以通过使用groupby函数来完成此操作。 ?

    2.8K30

    Pandas DataFrame创建方法大全

    Pandas是Python的数据分析利器,DataFrame是Pandas进行数据分析的基本结构,可以把DataFrame视为一个二维数据表,每一行都表示一个数据记录。...创建Pandas数据帧的六种方法如下: 创建空DataFrame 手工创建DataFrame 使用List创建DataFrame 使用Dict创建DataFrme 使用Excel文件创建DataFrame...2、手工创建Pandas DataFrame 接下来让我们看看如何使用pd.DataFrame手工创建一个Pandas数据帧: df = pd.DataFrame(data=['Apple','Banana...由于我们没有定义数据帧的列名,因此Pandas默认使用序号作为列名。...6、将CSV文件转换为Pandas DataFrame 假设你有一个CSV文件,例如“fruits.csv“,可以使用如下的代码 将其转换为DataFrame: fruits = pd.read_csv

    5.8K20
    领券