首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Jung的Edmonds Karp获得每条边的流量?

Edmonds-Karp算法是一种用于解决最大流问题的经典算法,它基于Ford-Fulkerson算法,并通过使用BFS(广度优先搜索)来寻找增广路径,从而提高了算法的效率。在使用Jung的Edmonds-Karp算法获得每条边的流量时,可以按照以下步骤进行操作:

  1. 创建一个有向图,表示流网络。图中的节点表示网络中的顶点,边表示网络中的路径,每条边都有一个容量表示其最大可传输的流量。
  2. 初始化每条边的流量为0。
  3. 使用Edmonds-Karp算法来计算最大流量。该算法的基本思想是在每一次迭代中,通过BFS找到从源节点到汇节点的一条增广路径,并计算该路径上的最小容量,然后更新路径上每条边的流量。
  4. 重复步骤3,直到无法找到增广路径为止。此时,所有的边的流量都已经确定。
  5. 最后,可以通过遍历每条边,获取每条边的流量值。

在腾讯云中,可以使用腾讯云的云原生产品和服务来支持使用Jung的Edmonds-Karp算法获得每条边的流量。以下是一些相关的腾讯云产品和服务:

  1. 云服务器(CVM):提供弹性的计算能力,可用于部署和运行算法代码。 产品链接:https://cloud.tencent.com/product/cvm
  2. 云数据库MySQL版(CDB):提供可靠的数据库服务,用于存储和管理算法运行过程中的数据。 产品链接:https://cloud.tencent.com/product/cdb_mysql
  3. 人工智能机器学习平台(AI Lab):提供丰富的人工智能算法和模型,可用于辅助解决相关问题。 产品链接:https://cloud.tencent.com/product/ailab

请注意,以上仅为腾讯云的一些产品和服务示例,其他云计算品牌商也提供类似的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 别用 KMP 了, Rabin-Karp 算法了解下?

    经常有读者留言,请我讲讲那些比较经典的算法,我觉得有这个必要,主要有以下原因: 1、经典算法之所以经典,一定是因为有独特新颖的设计思想,那当然要带大家学习一波。 2、我会尽量从最简单、最基本的算法切入,带你亲手推导出来这些经典算法的设计思想,自然流畅地写出最终解法。一方面消除大多数人对算法的恐惧,另一方面可以避免很多人对算法死记硬背的错误习惯。 我之前用状态机的思路讲解了 KMP 算法,说实话 KMP 算法确实不太好理解。不过今天我来讲一讲字符串匹配的另一种经典算法:Rabin-Karp 算法,这是一个很简单优雅的算法。 本文会由浅入深地讲明白这个算法的核心思路,先从最简单的字符串转数字讲起,然后研究一道力扣题目,到最后你就会发现 Rabin-Karp 算法使用的就是滑动窗口技巧,直接套前文讲的 滑动窗口算法框架 就出来了,根本不用死记硬背。 废话不多说了,直接上干货。 首先,我问你一个很基础的问题,给你输入一个字符串形式的正整数,如何把它转化成数字的形式?很简单,下面这段代码就可以做到: string s = "8264"; int number = ; for (int i = ; i < s.size(); i++) { // 将字符转化成数字 number = * number + (s[i] - '0'); print(number); } // 打印输出: // 8 // 82 // 826 // 8264 可以看到这个算法的核心思路就是不断向最低位(个位)添加数字,同时把前面的数字整体左移一位(乘以 10)。 为什么是乘以 10?因为我们默认探讨的是十进制数。这和我们操作二进制数的时候是一个道理,左移一位就是把二进制数乘以 2,右移一位就是除以 2。 上面这个场景是不断给数字添加最低位,那如果我想删除数字的最高位,怎么做呢?比如说我想把 8264 变成 264,应该如何运算?其实也很简单,让 8264 减去 8000 就得到 264 了。 这个 8000 是怎么来的?是 8 x 10^3 算出来的。8 是最高位的数字,10 是因为我们这里是十进制数,3 是因为 8264 去掉最高位后还剩三位数。 上述内容主要探讨了如何在数字的最低位添加数字以及如何删除数字的最高位,用R表示数字的进制数,用L表示数字的位数,就可以总结出如下公式: /* 在最低位添加一个数字 */ int number = ; // number 的进制 int R = ; // 想在 number 的最低位添加的数字 int appendVal = ; // 运算,在最低位添加一位 number = R * number + appendVal; // 此时 number = 82643 /* 在最高位删除一个数字 */ int number = ; // number 的进制 int R = ; // number 最高位的数字 int removeVal = ; // 此时 number 的位数 int L = ; // 运算,删除最高位数字 number = number - removeVal * R^(L-); // 此时 number = 264 如果你能理解这两个公式,那么 Rabin-Karp 算法就没有任何难度,算法就是这样,再高大上的技巧,都是在最简单最基本的原理之上构建的。不过在讲 Rabin-Karp 算法之前,我们先来看一道简单的力扣题目。 高效寻找重复子序列 看下力扣第 187 题「重复的 DNA 序列」,我简单描述下题目: DNA 序列由四种碱基A, G, C, T组成,现在给你输入一个只包含A, G, C, T四种字符的字符串s代表一个 DNA 序列,请你在s中找出所有重复出现的长度为 10 的子字符串。 比如下面的测试用例: 输入:s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT" 输出:["AAAAACCCCC","CCCCCAAAAA"] 解释:子串 "AAAAACCCCC" 和 "CCCCCAAAAA" 都重复出现了两次。 输入:s = "AAAAAAAAAAAAA" 输出:["AAAAAAAAAA"] 函数签名如下: List<String> findRepeatedDnaSequences(String s); 这道题的拍脑袋解法比较简单粗暴,我直接穷举所有长度为 10 的子串,然后借助哈希集合寻找那些重复的子串就行了,代码如下: // 暴力解法 List<String> findRepeatedDnaSequences(String s) { int n = s.length(); // 记录出现过的子串 HashSet<String> seen = new HashSet(); // 记录那些重复出现多次的子串 // 注

    02

    Google Earth Engine(GEE)——全球河流三角洲和易损性数据集

    前言 – 床长人工智能教程 全球河流三角洲数据集结合了2174个三角洲位置和定义三角洲面积的多边形。我们将三角洲地区定义为由三角洲河道运动和三角洲退化形成的地貌活动范围。我们专注于渠道网络活动,因为它定义了最容易发生洪水的区域,并创造了资源和自然基础设施,使三角洲成为有吸引力的居住地。我们用包含三角洲活动的五个点来定义三角洲的多边形。这五个点标志着三角洲活动的可见痕迹,其中两个点是沿海岸线沉积的横向范围,三个点是沉积的上游和下游范围。围绕这五个点的凸体定义了一个三角洲多边形。你可以在这里阅读这篇开源论文,

    01

    Google Earth Engine(GEE)——全球沿海河流和环境变量一个包含5399条沿海河流和8个环境变量数据的全球数据集。

    全球沿海河流和环境变量¶。 一个包含5399条沿海河流和8个环境变量数据的全球数据集。在这些河流中,40%(n=2174)有地貌三角洲,其定义是突出于区域海岸线、分布的河道网络,或两者兼有。在全球范围内,平均每300公里的海岸线就有一个三角洲,但也有三角洲形成的热点,例如在东南亚,每100公里的海岸线就有一个三角洲。我们的分析表明,一条河流形成三角洲的可能性随着排水量、沉积物排放量和排水流域面积的增加而增加。另一方面,三角洲的可能性随着波高和潮汐范围的增加而减少。三角洲的可能性与受水盆地的坡度有着非单调的关系:坡度越大,三角洲的可能性就越小,但对于坡度大于0.006的情况,三角洲的可能性就会增加。这反映了在主动和被动边缘上对三角洲形成的不同控制。

    01
    领券