首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Pandas split来保留列的两部分?

在使用Pandas的split方法时,如果你想要保留列的两部分,可以使用str.split方法并结合expand=True参数来实现。以下是一个示例:

代码语言:txt
复制
import pandas as pd

# 创建一个示例DataFrame
data = {'column': ['A_B', 'C_D', 'E_F']}
df = pd.DataFrame(data)

# 使用split方法并设置expand=True来保留两部分
df[['part1', 'part2']] = df['column'].str.split('_', expand=True)

print(df)

输出结果将是:

代码语言:txt
复制
  column part1 part2
0    A_B     A     B
1    C_D     C     D
2    E_F     E     F

在这个示例中,我们首先创建了一个包含一个列column的DataFrame。然后,我们使用str.split方法将列中的每个字符串按照_分割,并通过设置expand=True来将分割后的结果扩展为新的列。最后,我们将这些新列分别命名为part1part2

这种方法的优势在于它能够方便地将一个列分割成多个列,并且可以灵活地选择分割符和保留的分割部分。

参考链接:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas中如何查找某列中最大的值?

一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

40410
  • Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    3.9K10

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("..

    63800

    Pandas处理csv表格的时候如何忽略某一列内容?

    一、前言 前几天在Python白银交流群有个叫【笑】的粉丝问了一个Pandas处理的问题,如下图所示。 下面是她的数据视图: 二、实现过程 这里【甯同学】给了一个解决方法。...只需要在读取的时候,加个index_col=0即可。 直接一步到位,简直太强了!...当然了,这个问题还可以使用usecols来解决,关于这个参数的用法,之前有写过,可以参考这个文章:盘点Pandas中csv文件读取的方法所带参数usecols知识。 三、总结 大家好,我是皮皮。...这篇文章主要分享了Pandas处理csv表格的时候如何忽略某一列内容的问题,文中针对该问题给出了具体的解析和代码演示,帮助粉丝顺利解决了问题。...最后感谢粉丝【笑】提问,感谢【甯同学】给出的代码和具体解析。

    2.2K20

    如何利用mysql5.7提供的虚拟列来提高查询效率

    如果我们使用的mysql是5.7版本,我们则可以使用mysql5.7版本提供的一个新特性--虚拟列来达到上述效果虚拟列在mysql5.7支持2种虚拟列virtual columns 和 stored columns...,但virtual类型的不行f、虚拟列定义不允许使用自增 (AUTO_INCREMENT),也不允许使用自增基列g、虚拟列允许修改表达式,但不允许修改存储方式(只能通过删除重新创建来修改)h、如果虚拟列用作索引...一次用作虚拟列的值,一次用作索引中的值3、虚拟列的使用场景a、虚拟列可以简化和统一查询,将复杂条件定义为生成的列,可以在查询时直接使用虚拟列(代替视图)b、存储虚拟列可以用作实例化缓存,以用于动态计算成本高昂的复杂条件...c、虚拟列可以模拟功能索引,并且可以使用索引,这对与无法直接使用索引的列(JSON 列)非常有用。...大体介绍了一下虚拟列,如果是使用mysql8.0.13以上的版本,可以函数索引,他的实现方式本质也是基于虚拟列实现。

    2.8K40

    如何使用python连接MySQL表的列值?

    在本文中,我们将深入探讨使用 Python 和 PyMySQL 库连接 MySQL 表的列值的过程。...提供了有关如何连接到MySQL数据库,执行SQL查询,连接列值以及最终使用Python打印结果的分步指南。...此技术对于需要使用 MySQL 数据库的数据分析师和开发人员等个人特别有用,他们需要将多个列的值合并到一个字符串中。...结论 总之,我们已经学会了如何使用Python连接MySQL表的列值,这对于任何使用关系数据库的人来说都是一项宝贵的技能。...但是,确保数据的安全性和完整性应该是重中之重,这可以通过实施诸如使用参数化查询和清理用户输入等措施来实现。利用从本文中获得的知识,您可以将此技术应用于您自己的项目并简化数据处理任务。

    24530

    PowerBI DAX 如何使用变量表里的列

    很多时候,我们可能需要使用变量表中的列,例如: VAR vTable = FILTER( 'Order' , [Discount] 0 ) 这里定义了一个 vTable 表示订单中没有折扣的那些订单...如果希望使用基表中列,可以使用这样的语法: 表[列] 因此, VAR vResult = SUM( 'Order'[LineSellout] ) 是有效的正确语法,而 VAR vResult = SUM...如果希望使用非基表中的列,则不可以直接引用到,要结合具体的场景来选择合适的函数。...取出某列 如果想直接取出某列,也必须注意使用的方式,例如,错误的方式如下: VAR vList = VALUES( vTable[LineSellout] ) 这就是一个错误的语法,因为 vTable[...其次,要强调一个问题,或者一个思考,那就是: 既然 VALUES 和 DISTINCTCOUNT 都不能使用到诸如 vTable[LineSellout] 的列,那么,是不是存在某个场景,是无法实现表达的

    4.3K10

    快速解释如何使用pandas的inplace参数

    介绍 在操作dataframe时,初学者有时甚至是更高级的数据科学家会对如何在pandas中使用inplace参数感到困惑。 更有趣的是,我看到的解释这个概念的文章或教程并不多。...它似乎被假定为知识或自我解释的概念。不幸的是,这对每个人来说都不是那么简单,因此本文试图解释什么是inplace参数以及如何正确使用它。...注意,age、second name和children列中有一些缺失值(nan)。 现在我们将演示dropna()函数如何使用inplace参数工作。...常见错误 使用inplace = True处理一个片段 如果我们只是想去掉第二个name和age列中的NaN,而保留number of children列不变,我们该怎么办?...这个警告之所以出现是因为Pandas设计师很好,他们实际上是在警告你不要做你可能不想做的事情。该代码正在更改只有两列的dataframe,而不是原始数据框架。

    2.4K20

    使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列

    一、前言 前几天在Python钻石交流群【瑜亮老师】给大家出了一道Pandas数据处理题目,使用Pandas完成下面的数据操作:把data列中的元素,按照它们出现的先后顺序进行分组排列,结果如new列中展示...new列为data列分组排序后的结果 print(df) 结果如下图所示: 二、实现过程 方法一 这里【猫药师Kelly】给出了一个解答,代码和结果如下图所示。...(*([k]*v for k, v in Counter(df['data']).items()))] print(df) 运行之后,结果如下图所示: 方法四 这里【月神】给出了三个方法,下面展示的这个方法和上面两个方法的思路是一样的...这篇文章主要盘点了使用Pandas完成data列数据处理,按照数据列中元素出现的先后顺序进行分组排列的问题,文中针对该问题给出了具体的解析和代码演示,一共6个方法,欢迎一起学习交流,我相信还有其他方法,...【月神】和【瑜亮老师】太强了,这个里边东西还是很多的,可以学习很多。

    2.3K10

    Pandas将三个聚合结果的列,如何合并到一张表里?

    一、前言 前几天在Python最强王者交流群【斌】问了一个Pandas数据处理的问题,一起来看看吧。 求教:将三个聚合结果的列,如何合并到一张表里?这是前两列,能够合并。...这是第三列,加权平均,也算出来了。但我不会合并。。。。 二、实现过程 后来【隔壁山楂】给了一个思路,Pandas中不能同时合并三个及以上,如下所示,和最开始的那一句一样,改下即可。...顺利地解决了粉丝的问题。另外也说下,推荐这个写法,df=pd.merge(df1, df2, on="列名1", how="left")。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了 ------------------- End -------------------

    17220

    在不动用sp_configure的情况下,如何 =》去掉列的自增长,并保留原数据

    应用场景:权限不够(只是某个用户,权限很低,不能使用sp_configure) 执行 附录: update BackupShopMenu set TempId=MId alter table BackupShopMenu...BackupShopMenu.TempId', 'MId', 'column' alter table BackupShopMenu alter column MId int not null --如果你的字段是可以为...null就不需要这段了 网上参考: 如何用sql语句去掉列的自增长(identity) **无法通过alter把现有自增字段改为非自增 比如alter table a alter...id int,自增属性不会去掉 通过修改系统表可以做到(此法可能有不可预知的结果,慎之...)...字段名 ' GO sp_configure 'allow updates ', 0 --------------------------------------------- --折中的办法

    1.1K140

    干货分享|如何用“Pandas”模块来做数据的统计分析!!

    在上一篇讲了几个常用的“Pandas”函数之后,今天小编就为大家介绍一下在数据统计分析当中经常用到的“Pandas”函数方法,希望能对大家有所收获。...而对于更加复杂的分组计算,“Pandas”模块中的“Crosstab”函数也能够帮助我们实现。...03 Pivot_table函数 和上面的“Cross_tab”函数的功能相类似,对于数据透视表而言,由于它的灵活性高,可以随意定制你的分析计算要求,而且操作性强,因此在实际的工作生活当中被广泛使用,...04 Sidetable函数 “Sidetable”可以被理解为是“Pandas”模块中的第三方的插件,它集合了制作透视表以及对数据集做统计分析等功能,让我们来实际操作一下吧 首先我们要下载安装这个“...Sidetable”组件, pip install sidetable 05 “Freq”函数 首先介绍的是“Sidetable”插件当中的“Freq”函数,里面包含了离散值每个类型的数量,其中是有百分比形式来呈现以及数字的形式来呈现

    82120

    使用 white-space 来实现保留文本域 textarea的换行格式和 空格格式

    接到这个需求,我搜索了一下,网上大多数是获取文本域的内容后,将其中的换行符,空格替换成html标签,如, 使用JavaScript处理,然后将这些数据转化后,保存的后端,在显示时,使用innerHTML...来显示到一个div或p标签内。...这里有一个很大的安全隐患就是,脚本注入,如果用户输入了一些script,而这些又没经过处理直接使用innerHTML显示到页面上,这是很危险的。 于是我寻求另一种解决途径。...删除 pre 保留 保留 不换行 保留 pre-wrap 保留 保留 换行 挂起 pre-line 保留 合并 换行 删除 break-spaces 保留 保留 换行 换行 normal 连续的空白符会被合并...演示demo 此外我还专门写了一个简单的demo来演示使用white-space来正确显示文本域中的文本格式。

    2.4K30

    如何使用 Set 来提高代码的性能

    对于许多用例,这些都是需要的。但是如果想让你的代码尽可能快速和可扩展,那么这些基本类型并不总是足够好。 在本文中,我们将讨论JS 中 Set对象如何让代码更快— 特别扩展性方便。...set不使用索引,而是使用键对数据排序。 set 中的元素按插入顺序是可迭代的,它不能包含任何重复的数据。换句话说, set中的每一项都必须是惟一的。...删除元素:在 Set中,可以根据每项的的 value 来删除该项。在数组中,等价的方法是使用基于元素的索引的 splice()。与前一点一样,依赖于索引的速度很慢。...保存 NaN:不能使用 indexOf()或 includes() 来查找值 NaN,而 Set 可以保存此值。...set.add(sum - n))(new Set)); 因为 Set.prototype.has()的时间复杂度仅为 O(1),所以使用 Set 来代替数组,最终使整个解决方案的线性运行时为 O(N)

    1.3K30

    如何使用 Set 来提高代码的性能

    但是如果想让你的代码尽可能快速和可扩展,那么这些基本类型并不总是足够好。 在本文中,我们将讨论JS 中Set对象如何让代码更快— 特别扩展性方便。 Array 和Set工作方式存在大量的交叉。...set不使用索引,而是使用键对数据排序。set 中的元素按插入顺序是可迭代的,它不能包含任何重复的数据。换句话说,set中的每一项都必须是惟一的。...删除元素:在Set中,可以根据每项的的 value 来删除该项。在数组中,等价的方法是使用基于元素的索引的splice()。与前一点一样,依赖于索引的速度很慢。...保存 NaN:不能使用indexOf()或 includes() 来查找值 NaN,而 Set 可以保存此值。...set.add(sum - n))(new Set)); 因为Set.prototype.has()的时间复杂度仅为O(1),所以使用 Set 来代替数组,最终使整个解决方案的线性运行时为O(N)。

    1.8K10
    领券