首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【Python】Pandas的apply函数使用示例

apply 是 pandas 库的一个很重要的函数,多和 groupby 函数一起用,也可以直接用于 DataFrame 和 Series 对象。...主要用于数据聚合运算,可以很方便的对分组进行现有的运算和自定义的运算。 ?...数据集 使用的数据集是美国人口普查的数据,可以从这里下载,里面包含了CSV数据文件和PDF说明文件,说明文件里解释了每个变量的意义。 数据大致是这个样子: ?...美国人口普查数据 问题 以每个州人口最多的 3 个县的人口总和为这个州人口的衡量标准,哪 3 个州人口最多? 在 2010 年至 2015 年间人口变化幅度最大的是哪个县?...分析 先按州分组,再对每个州内的县进行排序选出人口最多的 3 个县求和,作为每个州的人口数,最后排序。

2.1K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python如何使用Matplotlib模块的pie()函数绘制饼形图?

    模块安装 先安装matplotlib: pip install matplotlib 安装numpy模块,安装matplotlib时候就已经安装这个依赖了,所以不用装了,当然也可以独立安装: 图片 安装pandas...: pip install numpy 2 实现思路 数据存放在excel中,对指定数据进行分析,所以需要用到pandas; 对指定数据分析后绘制饼形图,需要用到Matplotlib模块的pie()函数...实现这个功能,主要使用了matplotlib 中 pyplot里的pie()函数; pie()函数部分源码: Autogenerated by boilerplate.py....','gold' 饼图绘制: patches, l_text, p_text = plt.pie(sizes, labels=labels,...()函数绘制饼形图 import pandas as pd from matplotlib import pyplot as plt class TestPie(): def __init

    434130

    数据科学篇| Pandas库的使用(二)

    ,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...数据表合并 有时候我们需要将多个渠道源的多个数据表进行合并,一个 DataFrame 相当于一个数据库的数据表,那么多个 DataFrame 数据表的合并就相当于多个数据库的表合并。...如何用 SQL 方式打开 Pandas Pandas 的 DataFrame 数据类型可以让我们像处理数据表一样进行操作,比如数据表的增删改查,都可以用 Pandas 工具来完成。...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。

    5.9K20

    如何使用Python中的装饰器创建具有实例化时间变量的新函数方法

    1、问题背景在Python中,我们可以使用装饰器来修改函数或方法的行为,但当装饰器需要使用一个在实例化时创建的对象时,事情就会变得复杂。...例如,我们想要创建一个装饰器,可以创建一个新的函数/方法来使用对象obj。如果被装饰的对象是一个函数,那么obj必须在函数创建时被实例化。...如果被装饰的对象是一个方法,那么必须为类的每个实例实例化一个新的obj,并将其绑定到该实例。2、解决方案我们可以使用以下方法来解决这个问题:使用inspect模块来获取被装饰对象的签名。...如果被装饰的对象是一个方法,则将obj绑定到self。如果被装饰的对象是一个函数,则实例化obj。返回一个新函数/方法,该函数/方法使用obj。...当这些函数/方法被调用时,dec装饰器会将obj绑定到self(如果是方法)或实例化obj(如果是函数)。然后,dec装饰器会返回一个新函数/方法,该函数/方法使用obj。

    9210

    数据科学篇| Pandas库的使用(二)

    ,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...1apply 函数是 Pandas 中自由度非常高的函数,使用频率也非常高。...数据表合并 有时候我们需要将多个渠道源的多个数据表进行合并,一个 DataFrame 相当于一个数据库的数据表,那么多个 DataFrame 数据表的合并就相当于多个数据库的表合并。...如何用 SQL 方式打开 Pandas Pandas 的 DataFrame 数据类型可以让我们像处理数据表一样进行操作,比如数据表的增删改查,都可以用 Pandas 工具来完成。...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。 最后,祝有所学习,有所成长

    4.5K30

    ​Pandas库的基础使用系列---数据读取

    前言欢迎各位小伙伴一起继续学习,我们上期和大家简单的介绍了一下JupyterLab的使用,从今天开始我们就要正式开始pandas的学习了。...网站:国家数据 (stats.gov.cn)如何加载数据当我们有了数据后,如何读取它里面的内容呢我们在根目录下创建一个data的文件夹,用来保存我们的数据,本次演示使用的数据集是行政区划我们可以点击右上角的下载图标进行下载为了演示...我们新建一个day01的目录用来保存我们的notebook选择默认的即可我们为了能使用pandas,我们需要通过pip 进行安装,在notebook中安装,还是比较方便的,只需输入以下内容!.../data/年度数据.xls")但是当你运行时,会发现报错,主要是因为,我们读取的excel格式比较老了,需要安装另一个库对他进行解析!...结尾好了今天的内容就是这些,我们介绍了如何安装pandas这个库,以及如何读取csv和xls文件。赶快动手实践一下吧,我是Tango,一个热爱分享技术的程序猿,我们下期见。

    23910

    Pandas库的基础使用系列---JupyterLab简介

    详情参照:Pandas库的基础使用系列---基础环境搭建-腾讯云开发者社区-腾讯云 (tencent.com)启动成功后的界面如下左侧我们可以看到有很多目录,为了后续方便学习和管理我们的学习素材,通常我们不会在终端的默认地址中直接打卡...JupyterLab,而是先创建一个自己的工作目录,然再启动,操作如下:cd Documents/WorkSpace/1_Python/pandas_work这个目录根据每个人习惯自行创建就好。...如何使用前面简单介绍了一下启动页的基本功能,初次之外还有一个非常重要的功能,就是创建JupyterNotebbok,这也是我们后面最长用的。...如何创建notebook呢,我们可以点击下图框选的图标来创建也可以在菜单File -> new ->Notebook 中创建还可以直接在左侧目录空白位置右键创建创建好后,会看到如下画面我们在这个类似单元格的地方输入我们代码如果要运行...执行后的效果如下除了可以写代码外,还可以写Markdown我们只需要将code改为Markdown即可同样还是通过shift + 回车来运行,执行后的效果如下更多其他的功能,等我们后面开始实际使用时和大家慢慢介绍

    53431

    数据专家最常使用的 10 大类 Pandas 函数 ⛵

    40 本文地址:http://www.showmeai.tech/article-detail/304 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容Python具有极其活跃的社区和覆盖全领域的第三方库工具库...,近年来一直位居编程语言热度头部位置,而数据科学领域最受欢迎的python工具库之一是 Pandas。...图片Pandas的功能与函数极其丰富,要完全记住和掌握是不现实的(也没有必要),资深数据分析师和数据科学家最常使用的大概有二三十个函数。在本篇内容中,ShowMeAI 把这些功能函数总结为10类。...图解数据分析:从入门到精通系列教程数据科学工具库速查表 | Pandas 速查表 1.读取数据我们经常要从外部源读取数据,基于不同的源数据格式,我们可以使用对应的 read_*功能:read_csv:我们读取...isnull:检查您的 DataFrame 是否缺失。dropna: 对数据做删除处理。注意它有很重要的参数how(如何确定观察是否被丢弃)和 thred(int类型,保留缺失值的数量)。

    3.6K21

    OEEL图表——进行直方图绘制histogram函数的使用

    简介 本文将使用histogram函数来进行数据分析。 直方图是一种用于可视化数据分布的图表。它可以帮助我们理解数据的集中程度、偏移程度和分散程度。以下是直方图的一些主要作用: 1....展示数据分布:直方图可以将数据按照不同区间进行分组,并以柱状图的形式呈现。通过观察直方图的形状和高低,我们可以了解数据在不同区间内的分布情况。 2. 检测异常值:直方图可以帮助我们发现数据中的异常值。...异常值往往会导致直方图在某一区间内出现明显的峰值或者缺口。通过观察直方图,我们可以发现这些异常值并进行进一步的分析。 3. 判断数据分布的偏度和峰度:直方图的形状可以反映数据的偏度和峰度。...偏度指的是数据分布的对称性,而峰度指的是数据分布的尖锐程度。通过观察直方图的形状,我们可以初步判断数据的偏度和峰度。 4. 比较数据分布:直方图可以用来比较不同数据集的分布情况。...函数 oeel.plotly.histogram(...) oeel.plotly.histogram(featCol, properties, legendNames, title, bargap)

    7100

    【python】详解pandas库的pd.merge函数「建议收藏」

    可以是列名,索引级名称,也可以是长度等于DataFrame长度的数组。 left_index: 如果为True,则使用左侧DataFrame中的索引(行标签)作为其连接键。...对于具有MultiIndex(分层)的DataFrame,级别数必须与右侧DataFrame中的连接键数相匹配。 right_index: 与left_index功能相似。...如果为True,则将名为_merge的Categorical类型列添加到具有值的输出对象: Observation Origin _merge value Merge key only in ‘left...2.0 NaN 2.0 right_only 3 2.0 NaN 2.0 right_only 指标参数也将接受字符串参数,在这种情况下,指标函数将使用传递的字符串的值作为指标列的名称...总的来说就是需要指定left、right链接的键,可以同时是key、index或者混合使用。

    1.4K20

    面试题-python3 内置函数map reduce filter 如何使用?

    前言 面试时候经常会考到 map reduce filter 这三个内置函数的使用 map() 函数 map() 会根据提供的函数对指定序列做映射。...(list(map(lambda x: x%2, a))) 题2:请将列表 [1,2,3,4,5] 使用python方法转变成 [1,4,9,16,25] a = [1, 2, 3, 4, 5] # 计算平方的函数...:map函数的功能可以理解成,对可迭代对象中的成员分别做一个功能计算,得到一个新的可迭代对象 题3:map函数对列表a=[1,3,5],b=[2,4,6]相乘得到[2,12,30] map函数是可以传多个可迭代对象的...print(list(map(lambda x, y: x*y, a, b))) reduce() 函数 在 Python3 中,reduce() 函数已经被从全局名字空间里移除了,它现在被放置在 functools...返回filter object 迭代器对象 题7:有个列表a = [1, 3, 5, 7, 0, -1, -9, -4, -5, 8] 使用filter 函数过滤出大于0的数 a = [1, 3, 5,

    69910

    如何用Python的pyecharts库绘制K线图

    01 K线图 一、概念 股市及期货市场中的K线图的画法包含四个数据,即开盘价、最高价、最低价、收盘价,所有的K线都是围绕这四个数据展开,反映大势的状况和价格信息。...研究金融的小伙伴肯定比较熟悉这个,那么我们看起来比较复杂的K线图,又是这样画出来的,本文我们将一起探索K线图的魅力与神奇之处吧!...二、用处 K线图用处于股票分析,作为数据分析,以后的进入大数据肯定是一个趋势和热潮,K线图的专业知识,说实话肯定比较的复杂,这里就不做过多的展示了,有兴趣的小伙伴去问问百度小哥哥哟!...02 K线图系列模板 一、最简单的K线图绘制 第一个K线图绘制,来看看需要哪些参数吧,数据集都有四个必要的哟!...title_opts=opts.TitleOpts(title="Kline-DataZoom-slider-Position"), ) .render("大量数据展示.html") ) K线图的绘制需要有专业的基本知识哟

    6.1K41

    Pandas库的基础使用系列---数据查看

    前言我们上篇文章中介绍了,如何加载excel和csv数据,其实除了这两种数据外,还可以从网站或者数据库中读取数据,这部分我们放到后面再和大家介绍。...有了数据,我们该如何查看呢,今天就和我一起看看如何查看数据的行,列的数据。...那么该如何解决这个问题呢?其实很简单,我们只需将他前两行跳过即可,你可以使用如下语句重新加载一次数据df = pd.read_excel(".....最新版本以及不支持了,这里就不介绍了)loc我们注意到,我们的excel表中并没有0~10的那列索引,这一列时pandas自动帮我们生成的,如果我们还想使用之前的指标那列作为索引该如何操作呢?...通过iloc来获取行数据如果我们的表格并没有类似上面这种表头时该如何获取数据呢?

    33000
    领券