在TensorFlow 2.1中,保存检查点的平均权重可以通过以下步骤实现:
tf.train.Checkpoint
和tf.train.CheckpointManager
来管理检查点。以下是一个详细的示例代码,展示了如何实现这些步骤:
import tensorflow as tf
import numpy as np
# 定义一个简单的模型
class SimpleModel(tf.keras.Model):
def __init__(self):
super(SimpleModel, self).__init__()
self.dense = tf.keras.layers.Dense(10)
def call(self, inputs):
return self.dense(inputs)
# 创建模型和优化器
model = SimpleModel()
optimizer = tf.keras.optimizers.Adam()
# 创建检查点管理器
checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
checkpoint_manager = tf.train.CheckpointManager(checkpoint, './checkpoints', max_to_keep=5)
# 训练模型并保存检查点
def train_step(inputs, targets):
with tf.GradientTape() as tape:
predictions = model(inputs)
loss = tf.keras.losses.mean_squared_error(targets, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
# 模拟训练过程
for epoch in range(10):
inputs = np.random.rand(32, 5).astype(np.float32)
targets = np.random.rand(32, 10).astype(np.float32)
loss = train_step(inputs, targets)
print(f"Epoch {epoch}, Loss: {loss.numpy().mean()}")
checkpoint_manager.save()
# 计算并保存平均权重
def average_checkpoints(checkpoint_manager):
num_checkpoints = len(checkpoint_manager.checkpoints)
if num_checkpoints == 0:
return
# 初始化平均权重
avg_weights = [tf.zeros_like(var) for var in model.trainable_variables]
# 累加每个检查点的权重
for checkpoint_path in checkpoint_manager.checkpoints:
checkpoint.restore(checkpoint_path).expect_partial()
for i, var in enumerate(model.trainable_variables):
avg_weights[i] += var / num_checkpoints
# 将平均权重赋值给模型
for i, var in enumerate(model.trainable_variables):
var.assign(avg_weights[i])
# 保存平均权重
avg_checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
avg_checkpoint_manager = tf.train.CheckpointManager(avg_checkpoint, './avg_checkpoints', max_to_keep=1)
avg_checkpoint_manager.save()
# 计算并保存平均权重
average_checkpoints(checkpoint_manager)
SimpleModel
,并使用Adam优化器。tf.train.Checkpoint
和tf.train.CheckpointManager
来管理检查点。max_to_keep
参数指定要保留的最大检查点数量。avg_weights
。tf.train.CheckpointManager
保存平均权重。领取专属 10元无门槛券
手把手带您无忧上云