最终,可算让我找到了Python绘制的免费方案,今天我们就一起来看看吧! 1. 什么是弦图 下面这张图就是弦图,主要用于展示多个对象之间的关系,连接在圆上任意两点之间的线段叫做弦。...来源:网络 对于弦图,有以下特点: 用不同颜色区分不同的对象(点) 圆上的两点之间的弦表示之间存在关系 弦的宽度表示关系程度,关系越明显则弦宽越宽 因为不同对象颜色不同,可以通过两点之间弦的颜色区分是对象...->对象的方向 一般来说,弦图可以用于以下几种场景: 人口迁徙(不同城市之间迁入迁出) 电竞战队或球队之间选手交易 具有重叠成分的不同成品与各成分关系 类似以上几类场景的情况等等 今天,我们绘制弦图要用到的可视化库是...弦图绘制 HoloViews是一个开源的Python库,可以用非常少的代码行中完成数据分析和可视化,除了默认的matplotlib后端外,还添加了一个Bokeh后端。...Bokeh提供了一个强大的平台,通过结合Bokeh提供的交互式小部件,可以使用HTML5 canvas和WebGL快速生成交互性和高维可视化,非常适合于数据的交互式探索。
尽管Matplotlib可以满足我们在Python中绘制图形时的所有需求,但有时使用它创建漂亮的图表有时会很耗时。好吧,有时候我们可能想向老板展示一些东西,以便拥有一些漂亮且互动的情节。...有很多出色的库可以做到这一点,Bokeh就是其中之一。但是,可能还需要一些时间来学习如何使用此类库。实际上,已经有人为我们解决了这个问题。...kind您想绘制哪种类型的图表?当前,pandas_bokeh支持以下图表类型:线,点,步,散点图,条形图,直方图,面积,饼图等。...以下是官方GitHub存储库中的GIF。 ? 高级参数 该库还支持许多高级参数,如果需要的话,这些参数使我们可以自定义绘图。 这是另一个使用相同数据集但使用折线图绘制数据的示例。...因此,该图表将被保存并输出到可以保留和分发的HTML文件中。 ? 在本文中,我演示了如何使用该pandas_bokeh库以极其简单的代码但具有交互功能的精美演示来端对端绘制Pandas数据框。
▲图2 代码示例②运行结果 代码示例②第3行使用multi_line()方法,实现一次性绘制两条折线,同时,在参数中定义不同折线的颜色。...如果使用Pandas Dataframe,则可以同时绘制不同列的数据。multi_line()方法的参数说明如下。...▲图3 代码示例③运行结果 代码示例③第13、15、16行使用line()方法逐一绘制折线,该方法的优点是基本数据清晰,可在不同线条绘制过程中直接定义图例。...▲图5 代码示例⑤运行结果 代码示例⑤第15、16行使用line()方法绘制两组不同颜色的曲线。...▲图10 代码示例⑩运行结果 代码示例⑩增加了Bokeh控件复选框,第12、13、14行使用line()方法绘制3条曲线;第16行定义复选框,并在18行定义回调函数,通过该回调函数控制3条曲线的可视状态
Bokeh 主要以其交互式图表可视化而闻名。Bokeh 使用 HTML 和 JavaScript 呈现其绘图,使用现代 Web 浏览器来呈现具有高级交互性的新颖图形的优雅、简洁构造。...安装 要安装此类型,请在终端中输入以下命令。 pip install bokeh 散点图 散点图中散景可以使用绘图模块的散射()方法被绘制。这里分别传递 x 和 y 坐标。...让我们看看可以添加的各种交互。 Interactive Legends click_policy 属性使图例具有交互性。 有两种类型的交互 隐藏:隐藏字形。...让我们看看如何使用和添加一些常用的小部件。 按钮 这个小部件向绘图添加了一个简单的按钮小部件。 我们必须将自定义 JavaScript 函数传递给模型类的 CustomJS() 方法。...进行数据可视化之Bokeh 使用 Python 进行数据可视化之Plotly
数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。...图表库 C3 – 以 d3 为基础构建的可重用图表库 Chart.js – 带有 canvas 标签的图表 Chartist.js – 具有强大浏览器兼容能力的响应式图表 Dimple – 适用于业务分析的面向对象的...其可以使用非常简单的代码为两个平台创建图表 Python工具 bokeh – 用于 Python 的交互式网页绘图工具 ggplot – 与ggplot2 面向R语言的 API相同 glumpy – OpenGL...ggplot2 的输出中添加了交互性), 统计图和简单网络图 rbokeh – 针对 Bokeh 的R语言接口 rgl – 使用了 OpenGL 的3D 可视化 shiny – 用于创建交互式应用和可视化的框架...visNetwork – 交互式网络可视化 Ruby工具 Chartkick – 使用 Ruby 的单线创建图表的工具 其他工具 不与特定平台或语言绑定的工具 Charted – 一个能够从任何数据文件中创建自动化
数据可视化分析告诉你答案 上一篇文章一些朋友留言想要源码学习一下,应大家要求,本篇就分享一下如何使用Bokeh进行一系列炫酷的数据可视化分析。...Bokeh与Python可视化领域中的流行库Matplotlib和Seaborn不同,它使用HTML和JavaScript渲染其图形,这使得它在构建基于Web的应用中成为一个非常理想的候选者。...此外,Bokeh还具有一些内置功能,可用于构建堆积条形图等大量示例,以及用于创建网络图和地图等更高级可视化的大量示例。...你可能会问:“Bokeh可以直接使用其他数据类型,为什么要使用ColumnDataSource?...然后使用dict将颜色配置映射到winLoss特征上。 步骤 5:组织布局 图形绘制完毕,我们想将两个绘图进行布局。Bokeh中,可以是使用网格式布局,或者选项卡切换式的布局。
pandas现在可以使用Plotly、Bokeh作为可视化的backend,直接实现交互性操作,无需再单独使用可视化包了。 下面我们一起看看如何使用。 1....包含葡萄酒类型的许多功能和相应的标签。...下面的代码绘制了数据集中两个要素之间的关系。...通过Plotly可以轻松地为每个类应用不同的颜色,以便直观地看到分类。...Bokeh还具有plot_grid函数,可以为多个图表创建类似于仪表板的布局,下面在网格布局中创建了四个图表。
如果没有安装,可以使用以下命令进行安装: pip install matplotlib seaborn Matplotlib基础 Matplotlib是一个灵活的绘图库,支持多种图表类型。...Pandas创建了一个简单的时间序列数据,并使用Matplotlib绘制了折线图。...实际应用示例:舆情分析的交互性可视化 让我们通过一个实际的应用场景,结合Matplotlib、Seaborn、Bokeh和Plotly,来展示如何创建一个交互性的舆情分析可视化。...总结 本文详细介绍了如何使用Python中的Matplotlib、Seaborn、Bokeh和Plotly等库进行数据可视化,并深入探讨了一系列主题,涵盖了从基础的静态图表到高级的交互性和动态可视化的方方面面...通过这篇综合性的指南,读者可以全面了解数据可视化的基础知识,并学会如何应用不同的库和技术,使得数据科学和分析工作更具深度和广度。
当可视化一个DataFrame时,选择使用哪个可视化库确实是一个头疼的事情。 这篇文章云朵君将和大家一起学习每个库的优点和缺点。到最后,对它们的不同特点有更好的了解,在合适的时候更容易选择合适的库。...语法和灵活性 不同库的语法有什么不同?低级别的库,如Matplotlib,提供了广泛的灵活性,可以完成几乎任何事情。然而,API也是很复杂的。...改善普通图表的美感 Seaborn是常见绘图类型的热门选择,如柱状图、箱形图、计数图和直方图。Seaborn不仅需要较少的代码来生成这些图,而且它们还具有增强的视觉美感。...你也可以使用:N 或:Q符号指定数据类型,如名义(没有任何顺序的分类数据)或定量(数值的衡量)。 查看数据转换的完整列表[6]。 链接图表 Altair提供了令人印象深刻的将多个地块连接在一起的能力。...缺点 作为一个具有某种中间层次界面的库,Bokeh通常需要更多的代码来产生与Seaborn、Altair或Plotly相同的图。
导读:本文通过一个项目案例,详细的介绍了如何从 Bokeh 基础到构建 Bokeh 交互式应用程序的过程,内容循序渐进且具有很高的实用性。...随着所有这些进步,有一个共同的趋势:增加交互性。人们喜欢在静态图中查看数据,但他们更喜欢的是使用数据来查看更改参数如何影响结果。...关于我的研究,一份报告告诉建筑物所有者他们可以通过改变他们的空调(AC)使用计划表节省多少电力是很好的,但是给他们一个交互式图表更有效,他们可以选择不同的使用计划表,看看他们的选择如何影响用电量。...Bokeh 中有多种类型的主动交互,但在这里我们将重点关注所谓的“小部件”(“widgets”),可以点击的元素,并让用户控制图形的某些方面。 ?...以下是一个简短的剪辑,展示了我们如何与整个仪表板进行交互: 在这里,我在浏览器中使用 Bokeh 应用程序(在 Chrome 的全屏模式下),该应用程序在本地服务器上运行。
大家好,我是俊欣,今天来和大家分享一下“如何用Pandas来绘制交互式的图形”,希望读者朋友们读了之后能够有所收获。...01 Plotly作为后端支持 我们可以使用第三方的可视化模块来做“Pandas”的后端支持,例如“Plotly”以及“Bokeh”等模块,进而便可以绘制出交互式的图形了,我们先来看一下“Plotly”...我们可以任意的放大特定的区域,以及下载高清的图像 当然我们也可以对散点图加上一个类别区分,酱紫来可视化不同类别之下的结果,代码如下 fig = data[['Hue', 'Proline', 'class...02 Bokeh作为后端支持 好了,我们来看一下用“Bokeh”作为后端支持的“Pandas”可视化该如何来操作,我们也同样来绘制一个散点图,通过不同的类别来区分的,代码如下 pd.options.plotting.backend...“Bokeh”模块当中有“plot_grid”方法可以用来绘制仪表盘,例如下面的代码绘制出了四个图形,分别是一张散点图,3张直方图,代码如下 output_notebook() p1 = data.plot_bokeh.scatter
Bokeh 基础到构建 Bokeh 交互式应用程序的过程,内容循序渐进且具有很高的实用性。...随着所有这些进步,有一个共同的趋势:增加交互性。 人们喜欢在静态图中查看数据,但他们更喜欢的是使用数据来查看更改参数如何影响结果。...关于我的研究,一份报告告诉建筑物所有者他们可以通过改变他们的空调(AC)使用计划表节省多少电力是很好的,但是给他们一个交互式图表更有效,他们可以选择不同的使用计划表,看看他们的选择如何影响用电量。...Bokeh 中有多种类型的主动交互,但在这里我们将重点关注所谓的“小部件”(“widgets”),可以点击的元素,并让用户控制图形的某些方面。 ?...以下是一个简短的剪辑,展示了我们如何与整个仪表板进行交互: 在这里,我在浏览器中使用 Bokeh 应用程序(在 Chrome 的全屏模式下),该应用程序在本地服务器上运行。
安装 在python中有多种安装Bokeh的方法,这里建议最简单的方法是使用Anaconda Python发行版,然后在命令行下输入以下命令: conda install bokeh 这里会安装Bokeh...notebook是用于数据探索的常用工具,在数据科学领域被广泛使用,建议大家在学习Bokeh的过程中使用jupyter notebook。...开始绘图 Bokeh是一个大型库,具有非常多的功能,这里不细讲具体函数方法,只通过一些案例来展示Bokeh的使用流程和可视化界面。...调用figure()函数 创建具有典型默认选项并易于自定义标题、工具和轴标签的图表 添加渲染器 上面使用的是line()线图函数,并且指定了数据源、线条样式、标签等,你也可以使用其他的绘图函数,如点图、...你可以添加多个数据系列,自定义不同的展示风格: from bokeh.plotting import figure, output_notebook, show # 准备三个数据系列 x = [0.1
基本的前提是,您可以实例化您的图片,然后分别添加不同的功能,即标题、轴、数据点和趋势线都是单独添加的,具有各自的美学属性。下面是一些ggplot代码的简单示例。...当制作漂亮的,像样的图形时,我非常倾向于Bokeh -很多美学工作已经为我们做了! 上面的蓝色图是上面要点的第17行上的一行代码。这两个直方图具有相同的值,但用途不同。...下图显示了一些随机的趋势,使用了更多的自定义图例和不同的线条类型和颜色: 最后提一下,Bokeh也是一个制作交互式仪表板的好工具。...下面是我构建的一个简单图的几个不同的表示,以及从斯坦福SNAP下载的一些开始绘制小型Facebook网络的代码。...希望在阅读完这篇综述之后,您可以看到各种美学和代码如何适用于不同的情况,从EDA到presentation。 ·END·
本文转自公众号『Python数据之道』 本文通过一个项目案例,详细的介绍了如何从 Bokeh 基础到构建 Bokeh 交互式应用程序的过程,内容循序渐进且具有很高的实用性。...随着所有这些进步,有一个共同的趋势:增加交互性。 人们喜欢在静态图中查看数据,但他们更喜欢的是使用数据来查看更改参数如何影响结果。...关于我的研究,一份报告告诉建筑物所有者他们可以通过改变他们的空调(AC)使用计划表节省多少电力是很好的,但是给他们一个交互式图表更有效,他们可以选择不同的使用计划表,看看他们的选择如何影响用电量。...Bokeh 中有多种类型的主动交互,但在这里我们将重点关注所谓的“小部件”(“widgets”),可以点击的元素,并让用户控制图形的某些方面。 ?...以下是一个简短的剪辑,展示了我们如何与整个仪表板进行交互: 在这里,我在浏览器中使用 Bokeh 应用程序(在 Chrome 的全屏模式下),该应用程序在本地服务器上运行。
在数据可视化的研究热潮中,如何让数据生动呈现,成了一个具有挑战性的任务,随之也出现了大量的可视化软件。相对于其他商业可视化软件,Python是开源且免费的,而且具有易上手、效果好的优点。...除了默认的Matplotlib后端,它还添加了一个Bokeh后端。结合Bokeh提供的交互式小部件,可以使用HTML5和WebGL快速生成交互式视图,以及进行高维数据的可视化探索。...Plotly生成的所有图表实际上都是由JavaScript产生的,无论是在浏览器还是在Jupyter中,所有的可视化、交互都是基于plotly.js的,它是一个高级的声明性图表库,提供了20多种图表类型...Pygal绘制线图的方法很简单,可以将图表渲染为一个SVG文件,用户使用浏览器打开SVG文件就可以查看生成的图表。...plotnine的优点为代码简洁,易学;绘制出的图流畅大方;不需要很多的代码就可以绘制出很不错的图。在使用plotnine绘图之前,首先需要理解绘图的基本概念。
BokehBokeh也是一个用于创建交互式图表的库,特别适用于大数据集的可视化。Bokeh生成的图表可以嵌入到Web应用中,并且具有高性能的特点。...Bokeh的优势在于其丰富的交互功能和高效的渲染能力,适合处理大规模数据。高级功能与比较除了基本的绘图功能外,这些库还提供了许多高级功能和定制选项,使用户能够创建更复杂、更具表现力的图表。...import seaborn as snsimport matplotlib.pyplot as plt# 使用不同的样式主题sns.set_style("whitegrid")# 加载示例数据集tips...应用场景选择简单静态图表: 对于简单的静态图表,Matplotlib和Seaborn是不错的选择。它们提供了丰富的绘图功能,适用于快速创建各种类型的图表。...交互式可视化: 如果需要创建交互式和动态的可视化图表,Plotly和Bokeh是更合适的选择。它们提供了丰富的交互功能,使用户能够通过悬停、缩放和选区等方式与数据进行交互。
安装第三方库 pip install pandas-bokeh or conda: conda install -c patrikhlobil pandas-bokeh 如果你是使用jupyter...") 当然在使用的时候,记得先设置 绘制后端为pandas_bokeh import pandas as pd pd.set_option('plotting.backend', 'pandas_bokeh...(kind="line") #等价于 df.plot_bokeh.line() 折线图 在绘制过程中,我们还可以设置很多参数,用来设置可视化图表的一些功能: kind : 图表类型,目前支持的有...或者,也可以传递与 DataFrame 具有相同元素数量的值数组 y:y的值。...,它们是: plot_data_points:添加绘制线上的数据点 plot_data_points_size:设置数据点的大小 标记:定义点类型*(默认值:circle)*,可能的值有:“circle
领取专属 10元无门槛券
手把手带您无忧上云