首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何使用DorkScout对全网或特定目标自动执行Google Dork安全扫描

    关于DorkScout DorkScout是一款功能强大的Google Dork安全扫描工具,在该工具的帮助下,广大研究人员可以轻松地对整个互联网范围内的Google Dork容器或特定目标执行自动化安全扫描...Go包安装 广大研究人员可以通过Golang包管理器来安装DorkScout: go get github.com/R4yGM/dorkscout 这种安装方式适用于所有操作系统平台。...Sensitive Online Shopping Info.dorkscout" - H="/dorkscout/a.html -x socks5://127.0.0.1:9050" 这种安装方式适用于所有操作系统平台...可执行程序 除此之外,我们还可以直接下载已编译好的工具代码并直接执行。...使用字典和代理执行扫描任务,工具将会以HTML格式返回扫描结果: dorkscout scan - d="/dorkscout/Sensitive Online Shopping Info.dorkscout

    1.2K30

    如何在 Tableau 中对列进行高亮颜色操作?

    在做数据分析时,如果数据量比较大,可以考虑使用颜色对重点关注的数据进行高亮操作,显眼的颜色可以帮助我们快速了解数据和发现问题。...比如一个数据表可能会有十几到几十列之多,为了更好的看清某些重要的列,我们可以对表进行如下操作—— 对列进行高亮颜色操作 原始表中包含多个列,如果我只想看一下利润这一列有什么规律,眼睛会在上下扫视的过程中很快迷失...对利润这一列进行颜色高亮 把一列修改成指定颜色这个操作在 Excel 中只需要两步:①选择一列 ②修改字体颜色 ,仅 2秒钟就能完成。...第2次尝试:选中要高亮的列并点击右键,选择 Format 后尝试对列进行颜色填充,寄希望于使用类似 Excel 中的方式完成。...Tableau 官方对列加颜色的操作提供了三种解决方法,上文中的是第一种,其他两项可参考最后的文章《在交叉表视图中将颜色应用于单个列》。

    5.8K20

    使用python对redis操作

    写在前面 首先声明,这是为了学习python对redis操作而写的一个小demo,包括了这几天网站找到的一些资料,综合总结出来一些东西,最后附上我写的一个用python操作redis的一个demo:...模块安装 python提供了一个模块redis-py来使我们很方便的操作redis数据库,安装该模块也很简单,直接使用pip安装就行,命令如下: pip install redis 安装完之后,使用import...简单说,官方推荐使用StrictRedis方法。 这里不推荐使用Redis类,原因是他和咱们在redis-cli操作有些不一样,主要不一样是下面这三个方面。      ...,供其他连接请求调用,这样将减少大量redis连接的执行时间,下面介绍两个类Redis和StrictRedis的连接池的实现方式: Redis的连接池的方法: pool = redis.ConnectionPool...shell也可以做,不过,现在就通过完成这个需求使用python来实现这个小demo吧。

    83410

    Python-科学计算-pandas-17-对某些列或行运算

    Python的科学计算及可视化 今天讲讲pandas模块 对Df的特定列或者行进行与自身或者常数的运算 Part 1:场景描述 ?...已知一个df_1,列索引为: ["value1", "value2", "value3", "value4"],行索引为0-7 现有分别有以下需求: 列操作:对“value1”, “value2”列的每个数平方...结果如下:列操作 ? 行操作 ? Part 2:代码 ?...对列操作还是对行操作,根据axis=1这个参数,默认取0 0,对列进行操作 1,对行进行操作 df_2 = df_1.apply(lambda x: np.square(x) if x.name in...['value1', 'value2'] else x)运用了apply方法,使用lambda函数,简单来理解就是对列名为['value1', 'value2']的每个元素进行平方,其余保持不变。

    2.2K10

    Python数据处理从零开始----第二章(pandas)(十一)通过列属性对列进行筛选

    本文主要目的是通过列属性进行列挑选,比如在同一个数据框中,有的列是整数类的,有的列是字符串列的,有的列是数字类的,有的列是布尔类型的。...假如我们需要挑选或者删除属性为整数类的列,就可能需要用到pandas.DataFrame.select_dtypes函数功能 该函数的主要格式是:DataFrame.select_dtypes(include...= None,exclude = None),返回DataFrame列的子集。...返回: subset:DataFrame,包含或者排除dtypes的的子集 笔记 要选取所有数字类的列,请使用np.number或'number' 要选取字符串的列,必须使用‘object’ 要选择日期时间...,请使用np.datetime64,'datetime'或'datetime64' 要选取所有属性为‘类’的列,请使用“category” 实例 新建数据集 import pandas as pd import

    1.6K20

    Python-科学计算-pandas-09-df列字符串操作2

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块: 对列的每一个元素进行同样的字符串操作 今天讲其中的1个操作: split Part 1:目标 已知Df某列都是字符串,每一个字符串都有一个文件与其对应...se_1)) print("\n") df_1["new_file_name"] = se_1 print("加入新的文件名:\n", df_1) print(type(df_1)) 代码截图 执行结果...Part 3:部分代码解读 df_2 = df_1["file_name"].str.split("-", expand=True),对列file_name的每个元素实行split("-")操作,理论上生成一个列表...,expand=True表示将生成列表结果分为多个列 se_1 = df_2["文件名"] + "." + df_3["文件类型"],实现两个Df之间对应每个元素的字符串连接操作,生成一个Series对象

    50410

    使用 Python 按行和按列对矩阵进行排序

    在本文中,我们将学习一个 python 程序来按行和按列对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和按列排序。...算法(步骤) 以下是执行所需任务要遵循的算法/步骤。− 创建一个函数sortingMatrixByRow()来对矩阵的每一行进行排序,即通过接受输入矩阵m(行数)作为参数来逐行排序。...使用 for 循环遍历矩阵的行。 使用另一个嵌套的 for 循环遍历窗体(行 +1)列到列的末尾。 将当前行、列元素与列、行元素交换。...Python 对给定的矩阵进行行和列排序。...此外,我们还学习了如何转置给定的矩阵,以及如何使用嵌套的 for 循环(而不是使用内置的 sort() 方法)按行对矩阵进行排序。

    6.1K50

    如何使用python连接MySQL表的列值?

    使用 MySQL 表时,通常需要将多个列值组合成一个字符串以进行报告和分析。Python是一种高级编程语言,提供了多个库,可以连接到MySQL数据库和执行SQL查询。...提供了有关如何连接到MySQL数据库,执行SQL查询,连接列值以及最终使用Python打印结果的分步指南。...可以使用此对象对数据库执行操作,例如执行 SQL 查询。 重要的是要记住,在连接到MySQL数据库时,您应该使用安全的方法,例如安全地存储密码并将访问限制为仅授权用户。...步骤 3:执行 SQL 查询 建立与 MySQL 数据库的连接后,我们可以使用游标执行 SQL 查询。游标是内存中的临时工作区,允许我们从数据库中获取和操作数据。...结论 总之,我们已经学会了如何使用Python连接MySQL表的列值,这对于任何使用关系数据库的人来说都是一项宝贵的技能。

    24530

    如何成为Python的数据操作库Pandas的专家?

    前言 Pandas库是Python中最流行的数据操作库。受到R语言的frames启发,它提供了一种通过其data-frame API操作数据的简单方法。...下面我们给大家介绍Pandas在Python中的定位。 ? 01 了解Pandas 要很好地理解pandas,关键之一是要理解pandas是一系列其他python库的包装器。...原生Python代码确实比编译后的代码要慢。不过,像Pandas这样的库提供了一个用于编译代码的python接口,并且知道如何正确使用这个接口。...向量化操作 与底层库Numpy一样,pandas执行向量化操作的效率比执行循环更高。这些效率是由于向量化操作是通过C编译代码执行的,而不是通过本机python代码执行的。...另一个因素是向量化操作的能力,它可以对整个数据集进行操作,而不只是对一个子数据集进行操作。

    3.1K31

    用python的pandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    有一个带有三列数据框的CSV格式文件。 第三栏文字较长。...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...不幸的是,我对R没有任何经验。我检查了互联网,但找不到。这个程序包有python端口吗?如果不存在,是否可以通过python使用该包? python参考方案 最近,我遇到了pingouin库。...如何用’-‘解析字符串到节点js本地脚本? – python 我正在使用本地节点js脚本来处理字符串。我陷入了将’-‘字符串解析为本地节点js脚本的问题。render.js:#!...sqlite3数据库已锁定 – python 我在Windows上使用Python 3和sqlite3。

    11.7K30
    领券