首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Lily HBase Indexer对HBase中的数据Solr中建立索引

Lily HBase Indexer提供了快速、简单的HBase的内容检索方案,它可以帮助你Solr中建立HBase的数据索引,从而通过Solr进行数据检索。...2.首先你必须按照上篇文章《如何使用HBase存储文本文件》的方式将文本文件保存到HBase中。 3.Solr中建立collection,这里需要定义一个schema文件对应到HBase的表结构。...注意Solr在建立全文索引的过程中,必须指定唯一键(uniqueKey),类似主键,唯一确定一行数据,我们这里的示例使用的是HBase中的Rowkey。如果没有,你可以让solr自动生成。...7.总结 ---- 1.使用Lily Indexer可以很方便的对HBase中的数据Solr中进行索引,包含HBase的二级索引,以及非结构化文本数据的全文索引。...2.使用Cloudera提供的Morphline工具,可以让你不需要编写一行代码,只需要通过使用一些配置文件就可以快速的对半/非机构化数据进行全文索引

4.9K30

pandas

版本太高 解决方法,使用openpyxl打开xlsx文件 df = pd.read_excel('鄱阳湖水文资料.xlsx',engine='openpyxl') 2、pandas索引问题 Python...中series与DataFrame区别 Series是带索引的一维数组 Series对象的两个重要属性是:index(索引)和value(数据值) DataFrame的任意一行或者一列就是一个Series...中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name'].values得出的是ndarray类型的值,后面的操作就不会限制于索引了 # waterlevel_data_trainx.values..._append(temp, ignore_index=True) pandas数据 与矩阵相同, Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转 我们的DataFrame...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转 注意 转不会影响原来的数据,所以如果想保存转后的数据,请将值赋给一个变量再保存。

12410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    一文讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!

    其实Pandas能实现的功能,远远不止这些,关于利用该库如何实现数据清晰和图表制作,不是本书的研究范围,大家可以下去好好学习这个库。 使用这个库之前,需要先导入这个库。...但是我们这里仅以读取excel文件为例,讲述如何使用Pandas库读取本地的excel文件。...① 什么是“位置索引”和标签索引 讲述如何取数之前,我们首先需要理解“位置索引”和“标签索引”这两个概念。 每个表的行索引就是一个“标签索引”,而标识每一行位置的数字就是 “位置索引”,如图所示。...pandas中,标签索引使用的是loc方法,位置索引用的是iloc方法。接下来就基于图中这张表,来带着大家来学习如何 “取数”。 首先,我们需要先读取这张表中的数据。...Excel数据的拼接 进行多张表合并的时候,我们需要将多张表的数据,进行纵向(上下)拼接。pandas中,直接使用pd.concat()函数,就可以完成表的纵向合并。

    6.6K30

    14个pandas神操作,手把手教你写代码

    关于为何有Python这个项目,吉·范罗苏姆1996年曾写道:6年前,也就是1989年12月,我寻找一门“课余”编程项目来打发圣诞节前后的时间。...Pandas简介 Pandas使用Python语言开发的用于数据处理和数据分析的第三方库。它擅长处理数字型数据和时间序列数据,当然文本型的数据也能轻松处理。...Jupyter Notebook中导入Pandas,按惯例起别名pd: # 引入 Pandas库,按惯例起别名pd import pandas as pd 这样,我们就可以使用pd调用Pandas的所有功能了...下面是一些常用的代码,可以执行看看效果(一次执行一行): df.shape # (100, 6) 查看行数和列数 df.info() # 查看索引数据类型和内存信息 df.describe() #...选择列的可以用以下方法: # 选择列 df[['team', 'Q1']] # 只看这两列,注意括号 df.loc[:, ['team', 'Q1']] # 和上一行效果一样 df.loc[x

    3.4K20

    Python 实现Excel自动化办公《下》

    上一讲我们讲到了Python 针对Excel 里面的特殊数据处理以及各种数据统计,本讲我们将引入Pandas 这个第三方库来实现数据的统计,只要一个方法就可以统计到上一讲的数据统计内容,本讲也会扩展讲讲...Pandas所涉及到的相关使用方法。...转输出 print(pd1.T)#整个数据集的翻转展示 print(pd1[0:3].T) #前三行数据翻转展示 排序输出 #排序输出 print(pd1.sort_index(axis=1,ascending...pd1.drop([1],axis=0,inplace=True) #删除指定行 axis=0 表示行,inplace=True表示原有的数据上改变 pd1.drop('job',axis=1,inplace...df.dropna(axis=1,how="all"))#删除掉全是空值的列 print(df.dropna(axis=0,how="all"))#删除掉全是空值的行 这一讲就分享到这里,内容也不少需要实践去了解它的使用技巧

    79320

    pandas模块(很详细归类),pd.concat(后续补充)

    6.12自我总结 一.pandas模块 import pandas as pd约定俗称为pd 1.模块官方文档地址 https://pandas.pydata.org/pandas-docs/stable...#生成的数据列表预定俗称最好命名成df #对df的取值 2.pd.DataFrame参数表 属性 详解 dtype 查看数据类型 index 查看行序列或者索引 columns 查看各列的标签 values...查看数据框内的数据,也即不含表头索引数据 describe 查看数据每一列的极值,均值,中位数,只可用于数值型数据 transpose 转,也可用T来操作 sort_index 排序,可按行或列index...,但是开始的话横纵坐标是不算在里面的,这里是横坐标的索引 取多行:df.loc[起始横坐标:结束横坐标] 必须是横坐标,纵坐标的名称而不去索引,前后可以相同就取起始横坐标这一行 9.df里的值按列取取列...取某一列,df[这列的对应的横坐标] 取列,df[[第一列的对应的横坐标,第二列的对应的横坐标]]以此类推 10.df里面按行取值 按行取值df.iloc[2, 1] 第3行第二个 11.df取某个区域

    1.5K20

    猿创征文|数据导入与预处理-第3章-pandas基础

    若未指定数据类型,pandas会根据传入的数据自动推断数据类型。 使用pandas中的Series数据结构时,可通过pandas点Series调用。...创建Series类对象或DataFrame类对象时,既可以使用自动生成的整数索引,也可以使用自定义的标签索引。无论哪种形式的索引,都是一个Index类的对象。...使用[]访问数据 变量[索引] 需要说明的是,若变量的值是一个Series类对象,则会根据索引获取该对象中对应的单个数据;若变量的值是一个DataFrame类对象,使用“[索引]”访问数据时会将索引视为列索引...需要说明的是,若变量是一个DataFrame类对象,它在使用"loc[索引]"或"iloc[索引]"访问数据时会将索引视为行索引,获取该索引对应的一行数据。...与单层索引相比,分层索引只适用于[]、loc和iloc,且用法大致相同。 使用[]访问数据 由于分层索引索引层数比单层索引使用[]方式访问数据时,需要根据不同的需求传入不同层级的索引

    14K20

    pandas | DataFrame基础运算以及空值填充

    今天是pandas数据处理专题的第四篇文章,我们一起来聊聊DataFrame的基本运算。...上一篇文章当中我们介绍了DataFrame数据结构当中一些常用的索引使用方法,比如iloc、loc以及逻辑索引等等。今天的文章我们来看看DataFrame的一些基本运算。...数据对齐 我们可以计算两个DataFrame的加和,pandas会自动将这两个DataFrame进行数据对齐,如果对不上的数据会被为Nan(not a number)。...我们发现pandas将两个DataFrame加起来合并了之后,凡是没有两个DataFrame都出现的位置就会被为Nan。...我们可以看到,当我们使用ffill填充的时候,对于第一行数据来说由于它没有前一行了,所以它的Nan会被保留。同样当我们使用bfill的时候,最后一行也无法填充。

    3.9K20

    数据导入与预处理-课程总结-01~03章

    使用[]访问数据 变量[索引] 需要说明的是,若变量的值是一个Series类对象,则会根据索引获取该对象中对应的单个数据;若变量的值是一个DataFrame类对象,使用“[索引]”访问数据时会将索引视为列索引...使用loc和iloc访问数据 pandas中也可以使用loc和iloc访问数据。...需要说明的是,若变量是一个DataFrame类对象,它在使用"loc[索引]"或"iloc[索引]"访问数据时会将索引视为行索引,获取该索引对应的一行数据。...使用分层索引访问数据 掌握分层索引使用方式,可以通过[]、loc和iloc访问Series类对象和DataFrame类对象的数据 pandas中除了可以通过简单的单层索引访问数据外,还可以通过复杂的分层索引访问数据...与单层索引相比,分层索引只适用于[]、loc和iloc,且用法大致相同。 使用[]访问数据 由于分层索引索引层数比单层索引使用[]方式访问数据时,需要根据不同的需求传入不同层级的索引

    3K20

    Python 数据分析(三):初识 Pandas

    数据转入 Pandas 数据结构时不必事先标记 Pandas 主要数据结构是 Series(一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计等领域里的大多数典型用例。...from pandas import Series ''' 创建 Series 对象 如果不指定索引,则使用默认索引,范围是:[0,......) # 某一行某一列数据 print(df.loc[1, 'name']) # 某一行指定列数据 print(df.loc[1, ['name', 'age']]) # 某一行所有列数据 print(df.loc...print(df.iloc[:, 0]) # 取某一个值 print(df.iloc[0, 1]) 3.3 添加删除 我们通过示例来看一下如何向 DataFrame 中添加数据以及如何从其中删除数据。...gender'] = ['男', '女', '保密'] print(df1) # 方式 2 df1.insert(0, 'id', ['001', '002', '003']) print(df1) # 某位置插入一行

    1.6K20

    统计师的Python日记【第5天:Pandas,露两手】

    一下就可以了: ? 然而可惜的是——没有P值! 也可以单独只计算两列的系数,比如计算S1与S3的相关系数: ? 二、缺失值处理 Pandas和Numpy采用NaN来表示缺失数据, ? 1....丢弃缺失值 两种方法可以丢弃缺失值,比如第四天的日记中使用的的城市人口数据: ? 将带有缺失的行丢弃掉: ? 这个逻辑是:“一行中只要有一个格缺失,这行就要丢弃。”...数据透视表 大家都用过excel的数据透视表,把行标签和列标签随意的布局,pandas也可以这么实施,使用 .unstack() 即可: ? 四、数据的导入导出 1....实际中,更可能是某种乱码,解决这种特殊分隔符,用 sep= 即可。 ? 忽略红色背景的部分。 还有一种情况是开头带有注释的: ? 使用 skiprows= 就可以指定要跳过的行: ?...从我多年统计师从业经验来看,学会了如何跳过行,也要学如何读取某些行,使用 nrows=n 可以指定要读取的前n行,以数据 ? 为例: ? 2.

    3K70

    详解pd.DataFrame中的几种索引变换

    导读 pandas中最常用的数据结构是DataFrame,而DataFrame相较于嵌套list或者二维numpy数组更好用的原因之一在于其提供了行索引和列名。...惯例开局一张图 01 索引简介与样例数据 Series和DataFrame是pandas中的主要数据结构类型(老版本中曾有三维数据结构Panel,是DataFrame的容器,后被取消),而二者相较于传统的数组或...list而言,最大的便利之处在于其提供了索引,DataFrame中还有列标签名,这些都使得操作一行或一列数据中非常方便,包括在数据访问、数据处理转换等。...关于索引的详细介绍可参考前文:python数据科学系列:pandas入门详细教程。 这里,为了便于后文举例解释,给出基本的DataFrame样例数据如下: ?...),可接收字典或函数完成单列数据的变换;apply既可用于一列(即Series)也可用于列(即DataFrame),但仅可接收函数作为参数,当作用于Series时对每个元素进行变换,作用于DataFrame

    2.5K20

    Pandas光速入门-一文掌握数据操作

    Python环境搭建-从安装到Hello World 安装 ---- 如果使用pip安装: pip install pandas 如果使用conda安装: conda install pandas 如果使用的是...使用函数pandas.Series(data, index, dtype, name, copy)创建,介绍其中两个主要参数:1、data,数据源;2、index(可选),索引,默认从数字0开始,也可以自定义索引...---- 上面的数据是直接定义的,但实际场景往往是从文件中读写数据pandas可以支持很多文件格式,读取文件函数一般命名是read_*(路径),比如常用的CSV文件读取使用函数read_csv(),...DataFrame.dropna(axis, how, thresh, subset, inplace)其中axis默认为0,表示逢空值删除整行,为1则删除整列;how默认为 ‘any’ 如果一行(或列...)有任何一个 NA 就去掉整行,为’all’则 一行(或列)都是 NA 才去掉这整行;subset:指定要检查的列;inplace默认False,表示返回一个新的DataFrame,否则返回None并覆盖原数据

    1.9K40

    pandas系列11-cutstackmelt

    pandas系列10-数值操作2 本文是书《对比Excel,轻松学习Python数据分析》的第二篇,主要内容包含 区间切分 插入数据(行或列) 转 索引重塑 长宽表转换 区间切分 Excel Excel...python 栗子 Pandas中进行区间切分使用的是cut()方法,方法中有个bins参数来指明区间 ?...行列互换 行列互换实际上就是转的意思 excel 现将要转换的数据进行复制 粘贴的时候勾选\color{red}{选择性粘贴},再选择转即可 ? 转后的效果图 ?...Python pandas中的转只需要调用.T方法即可 ? 索引重塑 所谓的索引重塑就是将原来的索引重新进行构造。两种常见的表示数据的结构: 表格型 树形 下面?...把数据从表格型数据转换到树形数据的过程,称之为重塑reshape stack 该过程Excel中无法实现,pandas中是通过\color{red}{stack}方法实现的 ?

    3.4K10

    基础知识篇(一)Pandas数据结构

    本文介绍pandas的基本数据类型,要熟练使用pandas,需要熟悉它的两种主要数据结构:Series和DataFrame 1.Series Series 形如于一维矩阵的对象,通常用来存储一列数值,其包含数值列...(与numpy数据格式相似)和标签列(与数值列相对应,称之为index列) 1.1 Series生成 最简单的Series可以由一个数值list生成 import pandas as pd from pandas...因为没有在生成Series的时候设置index列,所以pandas会创建由0到N-1的默认索引(N为数据长度) 此时可以分别values和index属性,如下: obj.values array([...为pandas中最重要的数据结构,它的格式等同于我们要处理的矩形表格:拥有列,每列可以有不同类型的数据,拥有列名,行、列索引等......例如: # pd的转,可以使用类似矩阵转的方法 frame2.T one two three four five six year 2000 2001 2002 2001 2002 2003 state

    80530

    Pandas知识点-Series数据结构介绍

    取出DataFrame中的任意一列(或任意一行,行用iloc获取,如df.iloc[0]),其数据类型都是Series,说明DataFrame是由Series构成的。...关于索引还需要注意,Pandas中的索引值是可以重复的,当然最好不要设置重复,避免进行一些索引不可重复的操作时出现错误。 2....> 修改Series的行索引后,如果要将行索引还原成初始状态,可以使用reset_index()方法还原。...调用reset_index()时,要将drop参数设置为True,否则Pandas不会删除前面设置的行索引,而是将设置的行索引移动到数据中,使数据变成两列,这样数据就变成了DataFrame,而不再是...以上就是Pandas中Series数据结构的基本介绍。Series与DataFrame的很多方法是一样的,如使用head()和tail()来显示前n行或后n行。

    2.3K30

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    尽管read_excel方法包含数百万个参数,但我们只讨论那些日常操作中最常见的那些。 我们使用Iris样本数据集,出于教育目的,该数据集可在线免费使用。...使用index_col参数可以操作数据框中的索引列,如果将值0设置为none,它将使用第一列作为index。 ?...二、查看的数据的属性 现在我们有了DataFrame,可以从多个角度查看数据了。Pandas有很多我们可以使用的功能,接下来将使用其中一些来看下我们的数据集。...2、查看列 ? 3、查看特定行 这里使用的方法是loc函数,其中我们可以指定以冒号分隔的起始行和结束行。注意,索引从0开始而不是1。 ? 4、同时分割行和列 ? 5、某一列中筛选 ?...9、用多个条件筛选数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ? 10、根据数字条件过滤 ? 11、Excel中复制自定义的筛选器 ?

    8.4K30
    领券