Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...ignore_index 参数用于在追加行后重置数据帧的索引。concat 方法的第一个参数是要与列名连接的数据帧列表。 ignore_index 参数用于在追加行后重置数据帧的索引。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。
excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...如何实现? ? 图1 (注:这是无意在ozgrid.com中看到的一个问题,我觉得程序编写得很巧妙,使用了递归的方法来解决,非常简洁,特将该解答稍作整理后辑录于此与大家分享!)...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要的数据个数 n = 3 '在数组中存储要组合的数据...Then lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2
数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。...例如可以从dtype的返回值中仅获取类型为bool的列。 3 数据切片和切块 数据切片和切块是使用不同的列或索引切分数据,实现从数据中获取特定子集的方式。...常见的数据切片和切换的方式如表3所示: 表3 Pandas常用数据切分方法 方法用途示例示例说明[['列名1', '列名2',…]]按列名选择单列或多列In: print(data2[['col1','...2 1 1选取行索引在[0:2)列索引在[0:1)中间的记录,行索引不包含2,列索引不包含1loc[m:n,[ '列名1', '列名2',…]]选择行索引在m到n间且列名为列名1、列名2的记录...,默认计算方式为求均值 8 高级函数使用 Pandas能直接实现数据框级别高级函数的应用,而不用写循环遍历每条记录甚至每个值后做计算,这种方式能极大提升计算效率,具体如表8所示: 表8 Pandas
使用Pandas的 isnull() 判断值是否为空。 使用 all() 和 any() 判断每列是否包含至少1个为True或全部为True的情况。...(df) 通过Pandas生成一个6行4列,列名分别为'col1'、'col2'、'col3'、'col4'的数据框。...在使用不同的缺失值策略时,需要注意以下几个问题: 缺失值的处理的前提是已经可以正确识别所有缺失值字段,关于识别的问题在使用Pandas读取数据时可通过设置 na_values 的值指定。...先通过 df.copy() 复制一个原始数据框的副本,用来存储Z-Score标准化后的得分,再通过 df.columns 获得原始数据框的列名,接着通过循环判断每一列中的异常值。...在该部分方法示例中,依次使用默认规则(全部列相同的数据记录)、col1列相同、col2列相同以及指定col1和col2完全相同4种规则进行去重。返回结果如下。
Series的布尔索引 从Series中获取满足某些条件的数据,可以使用布尔索引 然后可以手动创建布尔值列表 bool_index = [True,False,False,False,True] scientists...,会根据索引进行 索引不同的元素最终计算的结果会填充成缺失值,用NaN表示.NaN表示Null DataFrame常用属性方法 ndim是数据集的维度 size是数据集的行数乘列数 count统计数据集每个列含有的非空元素...也可以利用布尔索引获取某些元素(使用逻辑运算获取最小值) 更改Series 和DataFrame 通过set_index()方法设置行索引名字 加载数据文件时,如果不指定行索引,Pandas会自动加上从...0开始的索引 如果提前写好行索引的列表,可以用set_index引入进来,也可以直接写入列表内容 加载数据的时候,也可以通过通过index_col参数,指定使用某一列数据作为行索引 movie2 = pd.read_csv...,再赋值回去 3.通过dataframe[列名]添加新列 4.使用insert()方法插入列 loc 新插入的列在所有列中的位置(0,1,2,3...) column=列名 value=值 # index
矩阵:推荐只存放一种数据类型的数据,但可允许多种数据类型 2.1 新建矩阵 使用numpy模块中的array()函数 2.2 取子集 使用下标和切片法: 2.3 矩阵和数据转换 矩阵转为数据框,可以加上行名和列名...Note:会丢失行名和列名 df2.values df2.to_numpy() np.array(df2) 2.4 转置 m1.T 3.数据框 3.1 新建数据框 方式1: DataFrame函数:创建一个字典...,然后传递给pandas中的DataFrame()函数 可以使用index参数指定行名 方式2:从csv文件读取 import pandas as pd df2 = pd.read_csv("day3...(df2) 3.2 数据框提取列 提取一列:点号或者[],如果列名有空格,不能使用点号 print(df1.gene) print(df1['gene']) type(df1.gene) # 返回series...df1.gene.tolist() # series 转为list df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置
很多朋友使用Python中的Pandas这个库进行Excel的数据处理,数据处理从宏观上分为这么3个阶段:数据读取、数据处理、数据输出。对于大多数新人来说,在数据读取的这一步就卡住了。...结果如下图所示:列名没有对齐,不是代码运行有问题,是因为那么列被当作了索引列。图片这种方式不符合我们这个文件的要求,所以我们可以进行以下修改:不要指定索引列。...我们在原表里加入了sheet2,结果如下图所示:这种情况下,不会读取sheet1里面的内容图片3、取消header读取读取本身没有列名的数据。...结果如下图所示:我们添加了一列:年龄,本来是整数,但是指定float类型之后,读取出来成了小书。这种读取,更适合对数据有特殊要求的情况,例如:金融行业。图片5、自定义缺失值这种使用的场景是什么呢?...:我们的表格里,有个人的名字叫:庞强我们不想显示这个人的名字于是我们就在na_values指定:name这一列是庞强的名字,置为空,在pandas里空值会用NaN表示。
不仅是我们Python开发,很多其它行业的朋友也经常使用Python中的Pandas这个库进行Excel的数据处理。 数据处理从宏观上分为这么3个阶段:数据读取、数据处理、数据输出。...1、指定索引列读取 这种读取方式,适合Excel里的数据,本身有一列表示序号的情况。...结果如下图所示: 列名没有对齐,不是代码运行有问题,是因为name列被当作了索引列(序号)。 这种方式不符合我们这个文件的要求,所以我们可以进行以下修改:不要指定索引列。...结果如下图所示: 我们添加了一列:年龄,本来是整数,但是指定float类型之后,读取出来成了小书。 这种读取,更适合对数据有特殊要求的情况。...结果如下图所示: 我们的表格里,有个人的名字叫:庞强我们不想显示这个人的名字 于是我们就在na_values指定:name这一列是庞强的名字,置为空,在pandas里空值会用NaN表示。
在新版本0.18.1支持 header : int or list of ints, default ‘infer’ 指定行数用来作为列名,数据开始行数。...names : array-like, default None 用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None。...usecols : array-like, default None 返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。...squeeze : boolean, default False 如果文件值包含一列,则返回一个Series prefix : str, default None 在没有列标题时,给列添加前缀。...不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用 compact_ints : boolean, default False 不推荐使用,这个参数将会在未来版本移除 如果设置compact_ints
genres_num小于等于5的行 上述操作直接使用pandas并不会花多少时间,但是想要不创造任何中间临时结果一步到位产生所需的数据框子集,并且保持代码的可读性不是一件太容易的事,但是利用pdpipe...2.2.1 basic_stages basic_stages中包含了对数据框中的行、列进行丢弃/保留、重命名以及重编码的若干类: ColDrop: 这个类用于对指定单个或多个列进行丢弃...图15 可以看到这时原有列得以保留,新的列以旧列名+后缀名的方式被添加到旧列之后,下面我们修改result_columns参数以自定义结果列名: # 设置drop参数为False,并将suffix参数设置为...图21 OneHotEncode: 这个类用于为类别型变量创建哑变量(即独热处理),效果等价于pandas中的get_dummies,主要参数如下: columns:str或list,用于指定需要进行哑变量处理的列名... 这是我们在2.1中举例说明使用到的创建pipeline的方法,直接传入由按顺序的pipeline组件组成的列表便可生成所需pipeline,而除了直接将其视为函数直接传入原始数据和一些辅助参数(如
对于数据开发工程师或分析师而言,SQL 语言是标准的数据查询工具。本文提供了一系列的示例,说明如何使用pandas执行各种SQL操作。...SQL VS Pandas SELECT(数据选择) 在SQL中,选择是使用逗号分隔的列列表(或*来选择所有列): ? 在Pandas中,选择不但可根据列名称选取,还可以根据列所在的位置选取。...在where字句中搭配NOT NULL可以获得某个列不为空的项,Pandas中也有对应的实现: SQL: ? Pandas: ? DISTINCT(数据去重) SQL: ? Pandas: ?...常见的SQL操作是获取数据集中每个组中的记录数。 ? Pandas中对应的实现: ? 注意,在Pandas中,我们使用size()而不是count()。...每个方法都有参数,允许指定要执行的连接类型(LEFT, RIGHT, INNER, FULL)或要连接的列(列名或索引) ?
如果不指定参数,则会尝试使用默认值逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...=None names 指定列名,如果文件中不包含header的行,应该显性表示header=None ,header可以是一个整数的列表,如0,1,3。...dtype 例子: {‘a’: np.float64, ‘b’: np.int32} 指定每一列的数据类型,a,b表示列名 engine 使用的分析引擎。...对于大文件来说数据集中没有N/A空值,使用na_filter=False可以提升读取速度。 verbose 是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。...,数据为列名行以下的数据;若数据不含列名,则设定 header = None; names 指定列的名字,传入一个list数据 index_col 指定列为索引列,也可以使用u”strings” ,如果传递一个列表
列 5、丢掉genres_num小于等于5的行 上述操作直接使用pandas并不会花多少时间,但是想要不创造任何中间临时结果一步到位产生所需的数据框子集,并且保持代码的可读性不是一件太容易的事,但是利用...2.2.1 basic_stages basic_stages中包含了对数据框中的行、列进行丢弃/保留、重命名以及重编码的若干类: ColDrop: 这个类用于对指定单个或多个列进行丢弃,其主要参数如下...# 删除含有缺失值的列 pdp.DropNa(axis=1).apply(df) 结果如图10: 图10 FreqDrop: 这个类用于删除在指定的一列数据中出现频次小于所给阈值对应的全部行,...,因此只能形成一列返回值),默认为'new_col' follow_column:str型,控制结果列插入到指定列名之后,默认为None,即放到最后一列 func_desc:str型,可选参数,为你的函数添加说明文字...pipeline的几种方式: 2.3.1 PdPipeline 这是我们在2.1中举例说明使用到的创建pipeline的方法,直接传入由按顺序的pipeline组件组成的列表便可生成所需pipeline
如果不指定参数,则会尝试使用默认值逗号分隔。分隔符长于一个字符并且不是‘\s+’,将使用python的语法分析器。并且忽略数据中的逗号。...=None names 指定列名,如果文件中不包含header的行,应该显性表示header=None ,header可以是一个整数的列表,如[0,1,3]。...dtype 例子: {‘a’: np.float64, ‘b’: np.int32} 指定每一列的数据类型,a,b表示列名 engine 使用的分析引擎。...对于大文件来说数据集中没有N/A空值,使用na_filter=False可以提升读取速度。 verbose 是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。...,数据为列名行以下的数据;若数据不含列名,则设定 header = None; names 指定列的名字,传入一个list数据 index_col 指定列为索引列,也可以使用u”strings” ,如果传递一个列表
我们使用execute()方法执行SQL语句来查询customers表格中age列大于等于指定值的数据。...最后,我们使用一个循环遍历所有行,并打印它们的值。使用fetchall()获取列名和列类型当我们查询数据库时,通常需要知道每列的名称和数据类型。...在Python中,我们可以使用fetchall()方法获取查询结果中所有行的列名和列类型。...我们使用一个列表推导式来提取列名和列类型,并使用print()函数打印它们的值。使用fetchall()和pandas库获取数据框pandas是一个强大的数据分析库,可以用于处理和分析数据。...在Python中,我们可以使用pandas库将查询结果转换为数据框,并使用数据框来处理数据。
Pandas数据分析常用小技巧 ---- 数据分析中pandas的小技巧,快速进行数据预处理,欢迎点赞收藏,持续更新,作者:北山啦 ---- ---- 文章目录 Pandas数据分析常用小技巧 Pandas...others Python合并多个EXCEL工作表 pandas中Series和Dataframe数据类型互转 相同字段合并 Python小技巧 简单的表达式 列表推导式 交换变量 检查对象使用内存情况...对象中的⾮空值,并返回⼀个Boolean数组 df.dropna() # 删除所有包含空值的⾏ df.dropna(axis=1) # 删除所有包含空值的列 df.dropna(axis=1,thresh....append(df2) # 将df2中的⾏添加到df1的尾部 df.concat([df1,df2],axis=1,join='inner') # 将df2中的列添加到df1的尾部,值为空的对应⾏与对应列都不要...–replace和正则 分享pandas数据清洗技巧,在某列山使用replace和正则快速完成值的清洗 d = {"customer": ["A", "B", "C", "D"], "sales
subset:可选参数,默认为None,表示只在指定的列或行中查找缺失值并删除,可以是列名或行标签。...你还可以使用布尔运算符 and、or 和 not 进行复合条件判断。 引用列名:在表达式中,可以使用列名直接引用DataFrame的列。...axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。与labels参数功能相同,只是在不指定axis的情况下使用。...可以是单个列名的字符串,也可以是列名列表。 drop:指示是否在新索引中保留原有的列。默认为True,表示将原有的列从DataFrame中删除。 append:指示是否将新的索引添加到原有的索引之后。...axis:指定删除行还是删除列。默认为0,表示删除行;1表示删除列。 index:要删除的行的标签列表或单个标签。与labels参数功能相同,只是在不指定axis的情况下使用。
领取专属 10元无门槛券
手把手带您无忧上云