首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在 Python 数据灵活运用 Pandas 索引

参考链接: 用Pandas建立索引并选择数据 作者 | 周志鹏  责编 | 刘静  据不靠谱数据来源统计,学习了Pandas同学,有超过60%仍然投向了Excel怀抱,之所以做此下策,多半是因为刚开始用...在loc方法,我们可以把这一列判断得到值传入行参数位置,Pandas会默认返回结果为True行(这里是索引从0到12行),而丢掉结果为False行,直接上例子:  场景二:我们想要把所有渠道流量来源和客单价单拎出来看一看...此处插播一条isin函数广告,这个函数能够帮助我们快速判断源数据一列(Series)值是否等于列表值。...插入场景之前,我们先花30秒时间捋一捋Pandas列(Series)向求值用法,具体操作如下:  只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。 ...作者:周志鹏,2年数据分析,深切感受到数据分析有趣和学习过程缺少案例无奈,遂新开公众号「数据不吹牛」,定期更新数据分析相关技巧和有趣案例(含实战数据集),欢迎大家关注交流。

1.7K00

pandas | 如何在DataFrame通过索引高效获取数据

今天是pandas数据处理专题第三篇文章,我们来聊聊DataFrame索引。 上篇文章当中我们简单介绍了一下DataFrame这个数据结构一些常见用法,从整体上大概了解了一下这个数据结构。...数据准备 上一篇文章当中我们了解了DataFrame可以看成是一系列Series组合dict,所以我们想要查询表一列,也就是查询某一个Series,我们只需要像是dict一样传入key值就可以查找了...不仅如此,loc方法也是支持切片,也就是说虽然我们传进是一个字符串,但是它在原数据当中是对应了一个位置。我们使用切片,pandas会自动替我们完成索引对应位置映射。 ?...比如我想要单独查询第2行,我们通过df[2]来查询是会报错。因为pandas会混淆不知道我们究竟是想要查询一列还是一行,所以这个时候只能通过iloc或者是loc进行。...总结 今天主要介绍了loc、iloc和逻辑索引pandas当中用法,这也是pandas数据查询最常用方法,也是我们使用过程当中必然会用到内容。建议大家都能深刻理解,把它记牢。

13.1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据仓库如何使用索引

    数据索引作用就是加快查询速度,不论是传统数据库还是数据仓库。尤其是对于大数据表以及设计表连接复杂查询。之前接触数据仓库比较少,这里只是介绍一点小经验。...本篇主要介绍如何数据仓库关系表建立索引,注意是在关系数据关系表,而不是SSAS数据表。...用户和产品维度表聚集索引建立在业务键上,通过这样索引,能强化查询速度尤其是where语句中使用了这些键。通常where 表达式中经常会使用这个键值来查询维度数据。...当发现用来创建分区和聚集索引在同一列上并且在保存分区事实表文件组上创建了索引,那么SQLServer 将自动用事实表分区来分区索引(例如,索引会有和事实表相同分区函数和列)。...开始单纯严谨彻底地评估以便在数据仓库建立索引。 总结 本篇只是简单介绍了一般数据仓库关系数据如何建立索引,但是很多时候要根据实际请款来建立索引,甚至有时候不能使用索引

    1.8K70

    Excel如何“提取”一列红色单元格数据

    Excel技巧:Excel如何“提取”一列红色单元格数据? ? 场景:财务、HR、采购、商务、后勤部需要数据整理办公人士。 问题:Excel如何“提取”一列红色单元格数据?...具体操作方法如下:第一步:进行颜色排序 将鼠标放置在数据任意单元格,单击“排序”按钮(下图1处),对下列表“型号”列进行“单元格颜色”按红色进行排序。(下图3处) ?...第二步:复制红色单元格数据 将红色单元格数据复制到D列。黏贴时可以选择“选择性黏贴—值”。效果如下: ? 是不是很快搞定了客户朋友问题。但这样有个问题,破坏了数据原有的顺序。这时候怎么办呢?...补救步骤:增加辅助列 排序前,新增一列“序号”列。 ? 按颜色排序,复制出数据后,序号顺序被打乱。 ? 第三步:按序号在升序排序。...而序号是强烈推荐大家工作添加玩意。标识数据唯一性。当然这个案例有个问题,就是如果数据是更新。你必须每次排序一次,所以用VBA还是必须要搞定

    5.8K20

    如何使用Lily HBase Indexer对HBase数据在Solr建立索引

    Lily HBase Indexer提供了快速、简单HBase内容检索方案,它可以帮助你在Solr建立HBase数据索引,从而通过Solr进行数据检索。...2.首先你必须按照上篇文章《如何使用HBase存储文本文件》方式将文本文件保存到HBase。 3.在Solr建立collection,这里需要定义一个schema文件对应到HBase表结构。...注意Solr在建立全文索引过程,必须指定唯一键(uniqueKey),类似主键,唯一确定一行数据,我们这里示例使用是HBaseRowkey。如果没有,你可以让solr自动生成。...7.总结 ---- 1.使用Lily Indexer可以很方便对HBase数据在Solr中进行索引,包含HBase二级索引,以及非结构化文本数据全文索引。...2.使用Cloudera提供Morphline工具,可以让你不需要编写一行代码,只需要通过使用一些配置文件就可以快速对半/非机构化数据进行全文索引

    4.9K30

    问与答63: 如何获取一列数据重复次数最多数据

    学习Excel技术,关注微信公众号: excelperfect Q:如下图1所示,在工作表列A中有很多数据(为方便表述,示例只放置了9个数据),这些数据中有很多重复数据,我想得到重复次数最多数据是那个...,示例可以看出是“完美Excel”重复次数最多,如何获得这个数据?...在上面的公式: MATCH($A$1:$A$9,$A$1:$A$9,0) 在单元格区域A1:A9依次分别查找A1至A9单元格数据,得到这些数据第1次出现时所在行号,从而形成一个由该区域所有数据第一次出现行号组组成数字数组...MODE函数从上面的数组得到出现最多1个数字,也就是重复次数最多数据在单元格区域所在行。将这个数字作为INDEX函数参数,得到想应数据值。...有兴趣朋友可以使用“公式求值”功能一步步查看数组公式实现过程,来理解这个数组公式原理。

    3.6K20

    使用 Pandas resample填补时间序列数据空白

    在现实世界时间序列数据并不总是完全干净。有些时间点可能会因缺失值产生数据空白间隙。机器学习模型是不可能处理这些缺失数据,所以在我们要在数据分析和清理过程中进行缺失值填充。...本文介绍了如何使用pandas重采样函数来识别和填补这些空白。 原始数据 出于演示目的,我模拟了一些每天时间序列数据(总共10天范围),并且设置了一些空白间隙。...初始数据如下: 重采样函数 在pandas中一个强大时间序列函数是resample函数。这允许我们指定重新采样时间序列规则。...例如,我们数据缺少第2到第4个变量,将用第1个变量(1.0)值来填充。...总结 有许多方法可以识别和填补时间序列数据空白。使用重采样函数是一种用来识别和填充缺失数据点简单且有效方法。这可以用于在构建机器学习模型之前准备和清理数据

    4.3K20

    DevExpress控件gridcontrol表格控件,如何在属性设置一列显示为图片(图片按钮)

    DevExpress控件gridcontrol表格控件,如何在属性设置一列显示为图片(图片按钮)?效果如下图: ? 通过属性设置,而不用写代码。...由于此控件属性太多了,就连设置背景图片属性都有好几个地方可以设置。本人最近要移植别人开发项目,找了好久才发现这个属性位置。之前一直达不到这种效果。...属性设置步骤和方法如下: 首先添加gridcontrol控件,如下图,点击Run Designer ?...然后点击Columns添加列,点击所添加列再按照如下步骤设置属性: 在属性中找到ColumnEdit,把ColumnEditTextEditStyle属性设置为HideTextEditor;  展开...ColumnEdit,把ColumnEditButtons展开,将其Kind属性设置为Glyph; 找到其中Buttons,展开,找到其中0-Glyph,展开,找到其中ImageOptions

    6K50

    如何在Python 3安装pandas包和使用数据结构

    没有声明索引 我们将输入整数数据,然后为Series提供name参数,但我们将避免使用index参数来查看pandas如何隐式填充它: s = pd.Series([0, 1, 4, 9, 16, 25...], name='Squares') 现在,让我们打电话给系列,这样我们就可以看到pandas作用: s 我们将看到以下输出,左列索引,右列数据值。...用字典初始化系列 有了pandas,我们也可以用字典数据类型来初始化一个系列。这样,我们不会将索引声明为单独列表,而是使用内置键作为索引。...Python词典提供了另一种表单来在pandas设置Series。 DataFrames DataFrame是二维标记数据结构,其具有可由不同数据类型组成列。...您现在应该已经安装pandas,并且可以使用pandasSeries和DataFrames数据结构。 想要了解更多关于安装pandas包和使用数据结构相关教程,请前往腾讯云+社区学习更多知识。

    18.9K00

    使用Pandas&NumPy进行数据清洗6常用方法

    改变DataFrame索引 Pandas索引index扩展了Numpy数组功能,以允许更多多样化切分和标记。在很多情况下,使用唯一值作为索引值识别数据字段是非常有帮助。...pandas将会使用列表每个元素,然后设置State到左边列,RegionName到右边列。...:回顾 这个教程,你学会了从数据集中如何使用drop()函数去除不必要信息,也学会了如何数据设置索引,以让items可以被容易找到。...更多,你学会了如何使用.str()清洗对象字段,以及如何使用applymap对整个数据集清洗。最后,我们探索了如何移除CSV文件行,并且使用rename()方法重命名列。...掌握数据清洗非常重要,因为它是数据科学一个部分。你现在应该有了一个如何使用pandas和numpy进行数据清洗基本理解了。

    3.5K10

    使用Pandas&NumPy进行数据清洗6常用方法

    改变DataFrame索引 Pandas索引index扩展了Numpy数组功能,以允许更多多样化切分和标记。在很多情况下,使用唯一值作为索引值识别数据字段是非常有帮助。...pandas将会使用列表每个元素,然后设置State到左边列,RegionName到右边列。...:回顾 这个教程,你学会了从数据集中如何使用drop()函数去除不必要信息,也学会了如何数据设置索引,以让items可以被容易找到。...更多,你学会了如何使用.str()清洗对象字段,以及如何使用applymap对整个数据集清洗。最后,我们探索了如何移除CSV文件行,并且使用rename()方法重命名列。...掌握数据清洗非常重要,因为它是数据科学一个部分。你现在应该有了一个如何使用pandas和numpy进行数据清洗基本理解了。更多内容可参考pandas和numpy官网。

    3.2K20

    索引数据结构及算法原理--索引使用策略及优化(

    上面的查询从分析结果看用到了PRIMARY索引,但是key_len为4,说明只用到了索引一列前缀。...情况三:查询条件用到了索引精确匹配,但是中间某个条件未提供 EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date...,因为title未提供,所以查询只用到了索引一列,而后面的from_date虽然也在索引,但是由于title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no...如果想让from_date也使用索引而不是where过滤,可以增加一个辅助索引,此时上面的查询会使用这个索引。...如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title值很多,用填坑就不合适了,必须建立辅助索引

    42210

    如何使用流程 DataObject 并为流程设置租户

    不知道小伙伴们有没有留意过,在 Flowable 流程图绘制过程,我们可以编写一个名为 dataObject 元素,这个元素可以指定变量 id、名称以及数据类型等各种属性,并且在流程实例启动时候...添加 dataObject 首先我们来看下,在流程绘制过程如何去添加 dataObject 对象。...当流程部署成功之后,我们可以在 ACT_RU_VARIABLE 表查看到 dataObject 数据,如下图: 可以看到,dataObject 数据是和执行实例 ID 以及流程实例 ID 相关...这就是 dataObject 使用,其实非常 Easy!dataObject 平时主要可以用来定义一些全局属性。 3. 租户 说到这里,就顺便再来和小伙伴们聊一聊 Flowable 租户。...当这个流程图部署成功之后,我们在流程定义表 ACT_RE_PROCDEF 可以看到刚刚设置租户 ID: 接下来我们需要启动流程实例时候,就不能单纯拿着流程部署 ID 去启动了,还得拿上流程租户

    95620

    使用 Delete By Query API 方式删除ES索引数据

    方式去删除索引数据。...使用Delete By Query 删除API注意事项: 1, 一般生产环境使用该API操作索引都很大,文档都是千万甚至数亿级别。...小段被合并到段,然后这些段再被合并到更大段。段合并时候会将那些旧已删除文档从文件系统清除。被删除文档(或被更新文档旧版本)不会被拷贝到新大段。启动段合并不需要你做任何事。...max_num_segments=1 上面API意思表示合并索引每个分片为一个单独段,可以先设置大一点,10-5-1,一点一点慢慢降到1。一般推荐为1....,导致索引特别,删除数据删除索引形式进行,只能在原来索引上进行数据删除操作。

    38.6K111

    问与答62: 如何按指定个数在Excel获得一列数据所有可能组合?

    excelperfect Q:数据放置在列A,我要得到这些数据任意3个数据所有可能组合。如下图1所示,列A存放了5个数据,要得到这5个数据任意3个数据所有可能组合,如列B中所示。...如何实现? ? 图1 (注:这是无意在ozgrid.com中看到一个问题,我觉得程序编写得很巧妙,使用了递归方法来解决,非常简洁,特将该解答稍作整理后辑录于此与大家分享!)...A Set rng =Range("A1", Range("A1").End(xlDown)) '设置每个组合需要数据个数 n = 3 '在数组存储要组合数据...,有兴趣朋友可以使用F8键逐语句运行代码观察代码效果,来理解实现过程。...代码图片版如下: ? 如果将代码中注释掉代码恢复,也就是将组合结果放置在多列,运行后结果如下图2所示。 ? 图2

    5.6K30

    numpy和pandas库实战——批量得到文件夹下多个CSV文件一列数据并求其最值

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件一列数据并求其最大值和最小值,大家讨论甚为激烈,在此总结了两个方法,希望后面有遇到该问题小伙伴可以少走弯路...通常我们通过Python来处理数据,用比较多两个库就是numpy和pandas,在本篇文章,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件一列数据并求其最大值和最小值代码如下图所示。 ? 4、通过pandas库求取结果如下图所示。 ?...通过该方法,便可以快速取到文件夹下所有文件一列最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件一列数据并求其最大值和最小值代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件一列数据最大值和最小值,当然除了这两种方法之外,肯定还有其他方法也可以做得到,欢迎大家积极探讨

    9.5K20

    数据分析实际案例之:pandas在餐厅评分数据使用

    简介 为了更好熟练掌握pandas在实际数据分析应用,今天我们再介绍一下怎么使用pandas做美国餐厅评分数据分析。...餐厅评分数据简介 数据来源是UCI ML Repository,包含了一千多条数据,有5个属性,分别是: userID: 用户ID placeID:餐厅ID rating:总体评分 food_rating...:食物评分 service_rating:服务评分 我们使用pandas来读取数据: import numpy as np path = '.....如果我们关注是不同餐厅总评分和食物评分,我们可以先看下这些餐厅评分平均数,这里我们使用pivot_table方法: mean_ratings = df.pivot_table(values=['...132583 4 132584 6 132594 5 132608 6 132609 5 132613 6 dtype: int64 如果投票人数太少,那么这些数据其实是不客观

    1.7K20
    领券