首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使跟随Ai在基于环形2D网格的地图上工作

为了使跟随AI在基于环形2D网格的地图上工作,可以采取以下步骤:

  1. 地图建模:首先,需要将环形2D网格的地图建模并存储起来。地图可以使用数组或矩阵来表示,每个单元格表示一个网格单元,包含有关该单元格的信息,例如可通过、障碍物、目标位置等。
  2. 路径规划:使用适当的路径规划算法,如A*算法或Dijkstra算法,为AI提供可行的路径。路径规划算法会考虑到环形特性,并确保AI可以在环形2D网格上移动,避免碰撞或越界。
  3. AI行为:定义AI的行为和决策逻辑,使其能够在地图上移动并执行特定任务。这可能涉及到状态机、行为树或机器学习等技术。AI可以根据当前位置、目标位置和路径规划结果来做出决策。
  4. 碰撞检测:在AI移动过程中,需要进行碰撞检测以避免与障碍物或其他AI发生碰撞。可以使用简单的几何形状和相交检测算法来实现碰撞检测。
  5. 目标达成判断:AI可以通过检查当前位置是否达到目标位置来判断是否达成目标。一旦达到目标,可以执行相应的操作,例如采集数据、执行任务或与其他AI进行交互。
  6. 优化和调试:在实际应用中,可能需要对AI算法和地图进行优化和调试。可以通过收集性能数据、日志和调试工具来分析和改进AI的性能和行为。

推荐的腾讯云相关产品:

  • 云服务器(CVM):提供灵活可扩展的云计算实例,用于部署和运行AI应用。
  • 人工智能机器学习平台(AI Lab):提供丰富的机器学习和深度学习工具,帮助开发AI算法和模型。
  • 云数据库MySQL版(CDB):提供高可用性、可扩展性的关系型数据库,用于存储AI应用的数据。
  • 云存储对象存储(COS):提供安全、稳定的对象存储服务,用于存储AI应用的文件和数据。

以上是一个较为全面的回答,涵盖了环形2D网格地图上跟随AI工作的关键步骤和相关产品推荐。请注意,本回答仅涉及腾讯云相关产品,不包含其他云计算品牌商的信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

30分钟了解所有引擎组件,132个Unity 游戏引擎组件速通!【收藏 == 学会】

4.Cloth 蒙皮网格渲染器 官方手册地址:Cloth 蒙皮网格渲染器 Cloth组件与skin Mesh Renderer一起工作,为模拟织物提供基于物理解决方案。...2D游戏中,地图是一个非常重要元素。为了创建地图,需要使用Tilemap组件。Tilemap可以将大量小块(Tile)组合在一起,形成复杂地图。...使用Aspect Ratio Fitter可以创建具有一致纵横比例UI布局,使UI元素纵横比例始终保持一致,无论屏幕尺寸和分辨率如何变化。...实际,可以将复杂 3D 网格替换为 2D 公告牌表示形式。 它可以将3D对象渲染成2D图像,使其摄像机视野内保持始终朝向摄像机效果。...该组件输入来自 Sprite Shape Profile。 它可以创建基于网格2D形状,并为其应用纹理和材质。

2.6K35

高通AR眼镜,可以实时3D重建了!

「自我监督」意思,是使用重投影损失来监督每个单目深度模型。 而实时生成3D网格和平面非常准确,使物理世界与数字世界沉浸式AR体验得以无缝对接。...3D感知需要克服新挑战 为了更好地理解世界,3D感知依赖于多项任务,其中许多任务概念2D感知很相似。...与像素排列均匀网格2D图像不同,3D点云非常稀疏且不均匀,这就需要在可访问性与内存之间取得一个平衡。...专家正在使3D点云中高效对象检测成为可能。 为此,他们开发了一种基于变换器高效3D对象检测架构,这个架构利用极地空间中提取2D伪图像特征。...此外,随着机器学习研究工作推进,高通感知研究会比3D感知广泛得多。 XR、相机、移动、自动驾驶、物联网等领域,会有更多感知设备出现。 我们日常生活,未来会大不相同。

69530
  • ICLR2019 | 你追踪,我逃跑:一种用于主动视觉跟踪对抗博弈机制

    该论文由北京大学数字视频编解码技术国家工程实验室博士生钟方威、严汀沄王亦洲老师和腾讯AI Lab研究员孙鹏、罗文寒指导下合作完成。该研究也入选了2018腾讯AI Lab犀牛鸟专项研究计划。...然而,传统视觉跟踪方法研究仅仅专注于从连续帧中提取出关于目标的2D包围框,而没有考虑如何主动控制相机移动。因此,相比于这种“被动”跟踪,主动视觉跟踪更有实际应用价值,但也带来了诸多挑战。...左图:一个机器人主动跟随目标移动(图片来自网络) 右图:对比基于强化学习端到端主动跟踪和传统跟踪方法[1] 深度强化学习方法有前景,但仍有局限性 在前期工作[1][2]中,作者提出了一种用深度强化学习训练端到端网络来完成主动视觉跟踪方法...实验环境 作者多种不同2D和3D环境开展了实验以更进一步验证该方法有效性。2D环境是一个简单矩阵地图,用不同数值分别表示障碍物、目标、跟踪器等元素。...右图为消融实验结果,对比删减不同模块后学习曲线,作者提出两个改进方法能够使对抗强化学习训练更高效。 作者3D环境中实验更进一步证明该方法有效性和实用性。

    1.4K10

    模拟电话问路 — Facebook用一对机器人进行导航训练

    名为Talk the Walk研究任务和数据集是开源,同时也开放了Arxiv发布现实世界训练初步结果。这项研究包括人工智能系统如何定位自己并比人类更好地传达观测数据。...将游客机器人扔到纽约市一个随机街角,再由导游机器人将他们引导到2D地图某个位置。导游机器人知道地图和目标位置但不知道游客机器人在哪。...Talk the Walk涉及两个人工智能系统,包括曼哈顿地狱厨房,东村,金融区和东区以及布鲁克林威廉斯堡附近。 更复杂是,每一个社区都遵循一个网格系统,所以地图没有独特品质。...虽然360度视频和地图是训练系统输入一部分,但任务和基准数据集主要面向对话AI推进,工作集中基础,使用多模式方法开发自然语言实践理解。...基本,如果我们能够实现代理人真正理解自然语言的人工智能,那么对于AI来说这将是一个关键时刻,我真的非常关心这个长期愿景,首先是我们如何才能达到这种语言理解,我们怎样才能让AI真正拥有这种迄今为止一直缺失常识

    32040

    谷歌发布地图「时光机」:100年前,你家街道长啥样?

    用户可以上传城市历史地图,将其与现实世界坐标进行匹配,完成地理修正,并将其矢量化。 一个时空地图服务器。能显示城市地图如何随时间变化。 一个3D体验平台。...具体而言,用户可以通过浏览器上传各个年代纸质版地图扫描件,对其进行地理校正,使历史地图与现实世界坐标相匹配。 然后,通过追踪地理特征,比如标志性建筑、道路等,将历史地图转换成OSM矢量格式。...与此同时,算法会识别建筑立面上所有窗户、入口、楼梯这样独立组件,并根据其类别分别重建精细3D结构。 两者相结合,就得到了最终3D网格。这一结果会被存储3D资源库中,为下一步渲染做好准备。...专门设计神经网络,用以确保一个立面上生成窗户之间间距相等、形状一致。同时也保证不同语义类,比如楼梯和窗户之间一致性,使这些组件被放置到合理位置。...还原全球城镇,还有《微软模拟飞行》 在此之前,微软也和AI初创公司Blackshark.ai合作,上线了全球最大仿真游戏《微软模拟飞行2020》,通过机器学习2D转3D模式,还原了全球200万个城镇、

    66250

    AI迷路了怎么办?Facebook正在训练AI学会问路

    这种方式使得测试集导航准确率提高了一倍。...Facebook表示,这项工作目标是要提高学术界对于交流、感知和行动如何影响基础语言学习问题理解,同时也为把自然语言作为一种人机交互方式提供了压力测试。...选定这些区域都具有统一网格布局,同时为实验中每一对AI智能体双方分别提供了一半第一人称环境视角。 另一方面,AI“导游”只能获取带有通用地标的2D俯视地图,例如“餐厅”和“酒店”。...这些人类参与者也和机器人一起被分配了导游和游客角色,具有相同共享导航目标和信息约束(第一人称视角或俯视地图)。 强调使用真实环境和现实生活语言使整体问题更加困难。...MASC根据游客状态转换(例如向左,向右移动,从俯视角度,向上和向下移动)识别地标嵌入(例如,“餐馆”,“酒吧”等),并将其表示为地图嵌入2D卷积。

    31700

    Cocos技术派|3D小游戏《快上车》技术分享

    这样实现方式,让关卡编辑人员可视化编辑同时,又不用额外开发关卡编辑器,也解决了包大小问题。 03 小车移动跟随阴影是贴图吗?...需要注意是,目前引擎一个场景里只支持一个平行光,多个平行光将会没有效果,如果要补光可能要采用其它方式。 ? 04 拖尾效果如何制作? 首先,创建新粒子系统,调整对应粒子参数,如图: ? ?...为了能让模型 UI 展示,需要给模型节点(即挂载着 cc.ModelComponent 组件节点)添加 cc.UIModelComponent: ?...Cocos Creator 3D 延续了 Cocos Creator 2D UI 设计,学习成本比较低,2D 所拥有的各类布局神器,widget,layout 都有继承过来,开发效率高,适配好,因此我们之前...09 从工作流角度简述游戏开发过程?

    1.2K20

    基于激光雷达数据深度学习目标检测方法大合集(

    一文中对自动驾驶中广泛使用激光雷达进行了简单科普,今天,这篇文章将各大公司和机构基于激光雷达目标检测工作进行了列举和整合。由于文章列举方法太多,故作者将其分成上下两部分,本文为第一部分。...如下图是基于提议生成插图:(a)图像语义分割结果。(b)点云预测分割结果。(c)NMS之后正样本点基于点提议。 ? 如下是提议特征生成模块示意图。...KITTI,它在Titan X GPU实现了实时性能(40 fps)。 ? 投射点云以获得鸟瞰网格图。从点云投影创建两个网格地图。...这是一个用于点云快速准确地进行3D边框估计流水线。RGB-图被馈送到CNN。 E-RPN网格最后一个特征图上同时运行,并预测每个网格单元五个框。...(*本文为AI科技大本营转载文章,转载请联系作者)

    2.6K31

    通用智能框架 part1

    2、我们自由能原理和主动推理(FEP-AI)框架内开发了一个基于潜在变量生成模型生物启发SLAM体系结构,它提供了移动机器人灵活导航和规划。...然而,现代成功度量SLAM解决方案通过卡尔曼滤波(卡尔曼和布西,1961年)将激光雷达扫描与机器人内部里程计估计结合到2D或3D占用网格地图中(穆尔-阿塔尔等人,2015年;赫斯等人,2016)。...通过这种架构,我们在世界预测模型基础构建了基于图形拓扑地图。 允许机器人低级度量动作和高级显著路径分离。...请注意,基于图形经验地图开创性工作(Milford等人,2004a)也使用了将感官观察嵌入到低维空间中。...这些误差/噪声源通常是使环路闭合成为一个难题部分原因。然而,姿态信息图中松散嵌入(结合相关视图)允许地图构建变得对传感器和致动器漂移鲁棒,从而保持环境一致地图

    38040

    手把手搭建游戏AI如何使用深度学习搞定《流放之路》

    那么小白玩家该如何入坑游戏AI呢?游戏AI到底是如何和游戏进行接口交互,判断角色状态,执行动作,规划策略呢?...我们这个项目的目标是打造一个基于视觉输入游戏AI,它可以成功地游戏地图中进行自主巡航和自主防御。当然,你也可以在这个过程中一边玩游戏,一边学习打造游戏AI乐趣。...所以最可能是,游戏引擎3D环境中使用它自己世界内部表征,然后使用投影技术将游戏渲染为2D并显示屏幕。...有了以上两个函数之后,我们就可以用下面的代码计算在800*600屏幕xy平面的网格点。下面这个函数将是后面跟踪玩家一级平面上位置关键。...世界点坐标 & 投影点 表3:内部地图 回忆一下第二部分内容,投影地图类允许画面上任何像素映射到3D坐标(假设玩家总是xy平面上,然后该3D坐标会被量化为某个任意精度,让AI世界地图变成均匀间隔网格

    2.9K70

    机器人编程趣味实践19-武林秘籍(文档)

    Nav2 预期输入是符合 REP-105 TF 转换、使用静态成本地图地图源、BT XML 文件和任何相关传感器数据源。然后它将为完整或非完整机器人电机提供有效速度命令以跟随。...具有以下工具: 加载、提供和存储地图地图服务器) 地图上定位机器人 (AMCL) 围绕障碍物规划从 A 到 B 路径(Nav2 Planner) 控制机器人跟随路径...(Nav2 Controller) 将传感器数据转换为世界成本地图表示(Nav2 Costmap 2D) 使用行为树(Nav2 行为树和 BT Navigator)构建复杂机器人行为...可以导航插件找到所有用户报告插件列表。...这里是关于如何安装和使用 Nav2 与示例机器人 Turtlebot 3 (TB3) 文档,以及如何为其他机器人自定义它、调整行为以获得更好性能以及自定义内部结构以获得高级结果。

    58030

    CityDreamer:一键生成无边界3D城市

    机器之心专栏 机器之心编辑部 近些年,3D 自然场景生成出现了大量研究工作,但是 3D 城市生成研究工作还寥寥无几。这主要是因为 3D 城市生成更难,人类对于其中结构失真更敏感。...自然场景中,相同类别的物体通常有相似的外观,例如树通常是绿色。但是城市中,建筑外观非常多样,但它们被赋予了相同类别,这将导致建筑外观质量下降。...研究人员因此,设计了周期性位置编码,这对于处理多样性建筑立面来说是简单而有效。 为了使生成城市布局和外观都更逼真,研究人员们构建了 2 个数据集:OSM 和 GoogleEarth。...400 环形轨迹,包含 24,000 张图像及对应语义分割和建筑实例分割标注。...无边界城市布局生成 CityDreamer 将无限城市布局生成转化为可扩展语义地图和高度场生成问题。

    52410

    深度 | 2017CV技术报告:从3D物体重建到人体姿态估计

    与此相反,即使查看 2D 图片(即透视、遮挡、深度、场景中对象如何相互关联等情况下)时候,人们也能够以 3D 空间来理解世界。...DeepMind 强大生成模型可运行在 3D 和 2D 图像。使用 OpenGL 基于网格表示允许构建更多知识,例如,光线如何影响场景和使用材料。...这个数据集是使 3D 场景理解研究改变关键,也是使得我们工作成为可能关键。」...「在这个工作中,我们依赖原本空间变换网络提出 2D 变换层,提供了进行几何变换多种新型扩展,它们常用于计算机几何视觉中。」...总的来说,SLAM 解决方案结构可能保持不变,但是组件可能有一些改进。「大家可能希望用深度学习做一些全新、根本改变,例如完全扔掉几何图形、建立更基于识别的导航系统。

    1.3K81

    游戏人工智能 读书笔记(十一)游戏内容生成

    作者:xiaoxiwang 腾讯IEG高级研究员 AI游戏中应用一直很广泛,今天我们来聊一下关于AI用在游戏内容生成方面的事。...说到最早使用算法来生成地图游戏,或许就是1973年Maze War[1]这款游戏了。游戏中,玩家以第一人称视角操控,一个迷宫里面游荡,时而会遇到敌人进行战斗。...383781-dragonwarriormonsters2_036.jpg 当然事情实际并没有那么简单,或许一些简单小游戏关卡设计可以直接随机,但通常来讲,这项工作并不是几个random()就能搞定事...譬如地下城类地图生成。较早2D俯视游戏中,地图往往会用网格系统来表示,即一个MxN网格,每个格子是一个元素。元素可以是可通过地面,墙壁之类障碍物,以及宝箱,机关,等等。...这样带给玩家就是一种完整,统一直观感受;但在这一点,靠算法就很难实现得很好,比如如何将这些背景关系进行抽象描述并输入给计算机这件事就不是一件容易事,之后如何用算法将他们组织起来就更难了(尽管很多人可能觉得用深度学习理论是可以实现

    1.3K40

    2d像素游戏基本架构

    Unity拥有成熟2D工作流,使得开发2D和2.5D游戏更为方便。Unity跨平台支持性也更强,能够支持28个主流平台开发,这使得它在移动端游戏开发中更具优势。...两者选择取决于具体开发需求以及团队技术背景。接下来我们将讨论如何使用 Unity 2D 工具设计复杂地图和场景。...地图和场景 Unity中使用2D工具设计复杂地图和场景,可以通过以下步骤和技巧来实现: 创建和管理地图资源: UnityAssets文件夹下创建一个专门文件夹,例如“Tiles”,用于存放所有地图资源...使用TileMap工具:利用Unity内置TileMap功能来构建地图,通过拖拽不同类型图块至画布形成各种地形特征,如山脉、森林或海洋。...这样可以实现骨骼之间联动效果。 网格化处理:绘制骨骼时,可以使用网格化功能来简化操作。例如,使用Auto功能可以自动创建骨骼网格

    7110

    NeRF作者简述NeRF历史与发展

    沉浸式虚拟现实和增强现实中有许多应用。因此,视图合成使我们能够将标准2D图像或照片提升为完整3D表示方法,还实现了数字孪生和元宇宙等新应用。...例如,NeRF 已经谷歌地图和街景中被使用,用于根据城市、建筑和街道源照片创建沉浸式渲染,以及 Luma AI 移动应用中,通过拍摄感兴趣对象几张图像生成引人入胜飞越效果。...更具体地说,输入被映射到更高维空间,本质许多更高频率傅里叶函数,使网络更容易学习这些更高频率。...事实,我2010年获得了一项大型NSF(美国国家科学基金会)资助,提出了一种基于体积全新材料表示法;十年后 NeRF 论文确实使体积成为场景表示一流基元。...无论如何,这种新表示、分解和压缩爆发表明,深度学习-NeRF时代,数学表示和信号处理仍然是关键。EG3D本质上将一个3D点投影到较低维2D平面。

    80910

    DEFORM环轧模拟——你真的了解吗?

    1.环轧模拟现状 deform环件轧制工艺是一种环形坯壁厚减薄、直径扩大塑性成形工艺,坯料和工艺设计均有成熟理论指导,但在实际生产中仍存在很多问题,尤其截面复杂环形零件,例如主辊与坯料接触宏观打滑问题...2.Ring Rolling环轧专用算法 SFTC公司针对以上两个问题,首先对于接触处理,采用高精度六面体网格,并且接触位置自动加密网格,即使较小接触容差值,坯料接触面积也会和实际保持一致,保证坯料与各轧辊之间接触面积...3.虚拟工作台 环件轧制过程中,实际设备常会有一个平面工作台,由于其形状简单,作用是阻止工件轧制过程中不超过该平面,所以该工作台可参数化表示其作用,虚拟简化设置,环轧向导界面中只需选择是工作环件上方还是下方...以上设置能够大大简化环轧模拟前处理设置流程,使工艺人员快速完成前处理,得到与实际工艺相符且极具经济价值模拟结果数据deform安装教程。...DEFORM软件环轧向导模块中,完美解决了该问题,即使制坯后坯料非轴对称,也能自动提取多个2D横截面,采用DEFORM软件特有的morphing变形计算,自动生成变截面的六面体网格,保留制坯阶段缺陷

    3.5K20

    ICLR2019 | 你追踪,我逃跑:一种用于主动视觉跟踪对抗博弈机制

    然而,传统视觉跟踪方法研究仅仅专注于从连续帧中提取出关于目标的2D包围框,而没有考虑如何主动控制相机移动。因此,相比于这种“被动”跟踪,主动视觉跟踪更有实际应用价值,但也带来了诸多挑战。 ?...左图:一个机器人主动跟随目标移动(图片来自网络) 右图:对比基于强化学习端到端主动跟踪和传统跟踪方法[1] 深度强化学习方法有前景,但仍有局限性 在前期工作[1][2]中,作者提出了一种用深度强化学习训练端到端网络来完成主动视觉跟踪方法...实验环境 作者多种不同2D和3D环境开展了实验以更进一步验证该方法有效性。2D环境是一个简单矩阵地图,用不同数值分别表示障碍物、目标、跟踪器等元素。...作者只用其中一种地图(Block)用作训练,然后在所有可能组合环境中测试,从而证明模型泛化能力。 ? 3D环境是基于UE4和UnrealCV[3]构建虚拟环境。...右图为消融实验结果,对比删减不同模块后学习曲线,作者提出两个改进方法能够使对抗强化学习训练更高效。 作者3D环境中实验更进一步证明该方法有效性和实用性。

    86820

    Web3D地图来了!腾讯位置服务JavaScript API GL正式版发布

    JavaScript API GL是新一代基于WebGL实现高性能三维渲染引擎而封装一套3D版本地图API,借助GPU计算能力实现海量数据渲染,满足3D视角下地图展示,旨在让地图呈现给用户最真实世界...3k 10w 功能全面升级,场景支持丰富 除了体验与性能方面,JavaScript API GL功能方面也做了大幅度升级,更为完备,包括点、线、面绘制,自定义图层叠加、个性化样式及应用工具等,使开发者可以更加容易实现产品构思...点标记(MultiMarker) 除了海量点标记展示,功能层面,还内置了沿线动画功能,使您方便实现如轨迹回放、网约车中小车平滑运动效果。...自定义栅格图层(ImageTileLayer) 您可将图片形式地图(如景区手绘图、园区图等),叠加到JavascriptAPI GL显示出来,以达到极富个性化地图呈现。...为了将数据更加酷炫呈现在地图上,基于JavaScript API GL我们提供了一套位置数据可视化API,它可以实现轨迹数据、坐标点数据、热力、迁徙、航线等空间数据可视化展现。

    2.3K31

    自动驾驶地图构建(Mapping)-占位栅格图(Occupancy Grid Map)

    也就意味着,我们制图前必须将地面、动态物体(车辆、行人等)从传感器数据中移除掉; 2)每个网格(Cell)与其它所有网格状态是相互独立,即它状态不受周围其它网格状态影响; 3)每个时刻,车辆位置是精确...3.3 Inverse Measurement Model 占位栅格地图传感器测量模型为: image.png ,表示基于已有的地图Cell概率,叠加传感器测量结果,得到新占位概率值。...2D Lidar测量结果都是相对于自身传感器中心,即以2D Lidar中心为坐标原点;所有的测量结果最终都要转换到Map坐标系,完成地图制作计算。...地面识别的难度是比较高,因为很多道路路面内外界限点云中是不明确,自动化识别算法会误把道路边界外区域识别为道路路面,从而导致错误地图信息等。...动态物体(行人、车辆等)也需要从点云数据中移除,这依赖于基于点云和图像感知技术。但同样也存在很多技术难题,比如如何提升识别的准确率,如何将静止车辆识别出来等等。

    3.7K20
    领券