创建不同组大小不同的仓位频率表可以通过以下步骤实现:
总结:创建不同组大小不同的仓位频率表涉及多个领域的知识和技术,包括前端开发、后端开发、软件测试、数据库、服务器运维、云原生、网络通信、网络安全、音视频、多媒体处理、人工智能、物联网、移动开发、存储、区块链、元宇宙等。腾讯云提供了丰富的云服务和产品,可以满足各种需求,并提供相应的产品介绍链接供参考。
回答的时候尽量根据STAR法则回答,Situation: 事情是在什么情况下发生,Target 你是如何明确你的目标的,Action: 针对这样的情况分析,你采用了什么行动方式,Result: 结果怎样。
失重秤(Loss-in-weight feeder)是一种定量称重给料设备,从用途上讲,失重秤用于动态连续称重过程,可以对需要连续给料的物料进行称重和定量控制,并有物料瞬时流量和累计流量显示。从原理上讲,它是一种静态称重设备,采用的是静态料仓秤的称重技术,用称重传感器对料仓进行称重。但在失重秤的控制器里,要对料仓秤单位时间失去的重量运算,以得到物料的瞬时流量。
Flink和ClickHouse分别是实时计算和(近实时)OLAP领域的翘楚,也是近些年非常火爆的开源框架,很多大厂都在将两者结合使用来构建各种用途的实时平台,效果很好。关于两者的优点就不再赘述,本文来简单介绍笔者团队在点击流实时数仓方面的一点实践经验。
Flink 和 ClickHouse 分别是实时计算和 OLAP 领域的翘楚,也是近些年非常火爆的开源框架,很多大厂都在将两者结合使用来构建各种用途的实时平台,效果很好。关于两者的优点就不再赘述,本文来简单介绍笔者团队在点击流实时数仓方面的一点实践经验。
Flink 和 ClickHouse 分别是实时计算和(近实时)OLAP 领域的翘楚,也是近些年非常火爆的开源框架,很多大厂都在将两者结合使用来构建各种用途的实时平台、实时数仓,效果很好。关于两者的优点就不再赘述,本文来简单介绍笔者团队在点击流实时数仓方面的一点实践经验。
场景描述:数据工程团队是知乎技术中台的核心团队之一,该团队主要由数据平台、基础平台、数据仓库、AB Testing 四个子团队的 31 位优秀工程师组成。这篇文章分享了知乎实时数仓的演进过程。
上一篇文章详细给大家介绍了标签的设计与加工,在标签生命周期流程中,标签体系设计完成后,便进入标签加工与上线运行阶段,一般来说数据开发团队会主导此过程,但我们需要关心以下几个问题:
在数字化时代,数据指标已成为企业最重要的指南针。有效的数据治理对于确保“数据指南针”持续稳定工作至关重要。
"数据智能" (Data Intelligence) 有一个必须且基础的环节,就是数据仓库的建设,同时,数据仓库也是公司数据发展到一定规模后必然会提供的一种基础服务。从智能商业的角度来讲,数据的结果代
本文主要面向有C++基础,并且想用C++来做程序化交易的用户。 主要介绍了CTP的简单使用方式以及在使用过程中易遇到的‘坑’,并附上一些代码帮助学习。
Arctic 是一个开放式架构下的湖仓管理系统,在开放的 lceberg 数据湖格式之上, 提供更多面向流和更新场景的优化,以及一套可插拔的数据自优化机制和管理服务。
随着业务的发展,用户对系统需求变得越来越多,这就要求系统能够快速更新迭代以满足业务需求,通常系统版本发布时,都要先执行数据库的DDL变更,包括创建表、添加字段、添加索引、修改字段属性等。
Greenplum(以下简称GP)有2种存储格式,Heap表和AO表(AORO表,AOCO表)。
随着实时技术的不断发展和商家实时应用场景的不断丰富,有赞在实时数仓建设方面做了大量的尝试和实践。本文主要分享有赞在建设实时数仓过程中所沉淀的经验,内容包括以下五个部分:
转自知乎技术专栏:https://zhuanlan.zhihu.com/p/56807637
摘要:本文根据 Apache Flink 系列直播整理而成,由美团点评数据系统研发工程师黄伟伦老师分享。主要内容如下:
在区块链之后,逐步走入人们视野的科技热词是Web3.0和元宇宙。这三者有什么关系?高盛在一份研究报告中表示,区块链技术是元宇宙和Web3.0发展的核心。
我曾经花了一周时间开发了一个股票模拟交易后台程序,使用Node.js。代码量很少,能完成基本功能。下面给大家介绍一下其实现步骤。
已经使用各类函数统计出了数据结果,却被要求加入新的临时需求。这是数据分析师的工作日常,你是否还在为此苦恼?
作者 | 赵伟 策划 | 凌敏 业务背景 思必驰是一家对话式人工智能平台公司,拥有全链路的智能语音语言技术,致力于成为全链路智能语音及语言交互的平台型企业,自主研发了新一代人机交互平台 DUI 和人工智能芯片 TH1520,为车联网、IoT 及政务、金融等众多行业场景合作伙伴提供自然语言交互解决方案。 思必驰于 2019 年首次引入 Apache Doris ,基于 Apache Doris 构建了实时与离线一体的数仓架构。相对于过去架构,Apache Doris 凭借其灵活的查询模型、极低的运维
华智,携程高级研发经理,现负责数据仓库技术架构、性能优化、数仓规范制定、数据模型设计以及数据应用开发。
基于 Hive 的离线数仓往往是企业大数据生产系统中不可缺少的一环。Hive 数仓有很高的成熟度和稳定性,但由于它是离线的,延时很大。在一些对延时要求比较高的场景,需要另外搭建基于 Flink 的实时数仓,将链路延时降低到秒级。但是一套离线数仓加一套实时数仓的架构会带来超过两倍的资源消耗,甚至导致重复开发。
存储与计算资源是数仓建设的基础,也是数仓建设中的重要成本支出。而随着数仓建设规模逐渐扩大、时间跨度逐渐拉长,将不可避免的出现数据表、任务、字段的冗余。为了减轻资源负担,降低数仓维护成本,需要对数仓建设成本进行治理与优化。
写在前面: 博主是一名软件工程系大数据应用开发专业大二的学生,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一
近些年,企业对数据服务实时化服务需求日益增多。本文整理了常见实时数据组件的性能特点和适用场景,介绍了美团如何通过 Flink 引擎构建实时数据仓库,从而提供高效、稳健的实时数据服务。此前我们美团技术博客发布过一篇文章《流计算框架 Flink 与 Storm 的性能对比》,对 Flink 和 Storm 两个引擎的计算性能进行了比较。本文主要阐述使用 Flink 在实际数据生产上的经验。
在数字化转型驱动下,实时化需求日益成为金融业数据应用新常态。传统离线数仓“T+N”数据供给模式,难于满足“T+0”等高时效场景需求;依托Storm、Spark Streaming、Flink等实时计算框架提供“端到端”的实时加工模式,无法沉淀实时数据资产,存在实时数据复用性低、烟囱式垂直建设等不足。
量化合约指的是目标或任务具体明确,可以清晰度量。根据不同情况,表现为数量多少,具体的统计数字,范围衡量,时间长度等等。所谓量化就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。经过抽样的图像,只是在空间上被离散成为像素(样本)的阵列。而每个样本灰度值还是一个由无穷多个取值的连续变化量,必须将其转化为有限个离散值,赋予不同码字才能真正成为数字图像。这种转化称为量化。
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数
快狗打车业务快速发展是公司众多人员的努力,同时对数据侧提出了更高的要求。数据的价值随着时间的增加而降低,分析以及运营更加希望实时数据助力业务发展,研发也希望借助BI侧的大数据综合计算能力得到汇总数据。
在这项工作中,我通过创建一个包含四只基金的模型来探索 copula,这些基金跟踪股票、债券、美元和商品的市场指数。然后,我使用该模型生成模拟值,并使用实际收益和模拟收益来测试模型投资组合的性能,以计算风险价值(VaR)与期望损失(ES)。
“元数据是关于数据的数据”。从数据、信息、知识和智慧人类认知领域的层次结构来讲,数据是通过工具或机器搜集的原始资料。确切地说,数据是原始、未经处理的资料或潜在信息。信息就是经过某种处理并供人使用的数据。知识指的是你知道的事情,也就是经过内化的信息,而智慧则是指了解如何运用知识。元数据是对潜在信息的信息,是关于数据的更高层次抽象,是对数据的描述。
指象:谓天以景象示意,出自于《汉书》,希望以数据指象为言语,得一类而达之。感谢一路走路,不离不弃的你们,谢谢。
摘要:数据仓库的建设是“数据智能”必不可少的一环,也是大规模数据应用中必然面临的挑战,而 Flink 实时数仓在数据链路中扮演着极为重要的角色。本文中,美团点评高级技术专家鲁昊为大家分享了美团点评基于 Apache Flink 的实时数仓平台实践。
首先看下数仓架构。数仓的数据接入主要有两个来源,一个是客户端的上报,还有一个是业务后台 DB 的上报,这两份数据都会通过一个消息队列接入数仓。我们的数据仓库采用lambda架构,总体分为离线和实时两套体系,分别有自己的计算和存储体系。离线主要是以 Hive 作为存储载体,计算以 Spark 为主,Map Reduce为辅。实时数据处理主要用了 Flink,再辅以Kafka和OLAP。
退出,用自己的建的用户登录,建个 schema 表,这个也要和 oracle 数据库的用户一致。
当业务规模达到一定规模之后,像淘宝日订单量在5000万单以上,美团3000万单以上。数据库面对海量的数据压力,分库分表就是必须进行的操作了。而分库分表之后一些常规的查询可能都会产生问题,最常见的就是比如分页查询的问题。一般我们把分表的字段称作shardingkey,比如订单表按照用户ID作为shardingkey,那么如果查询条件中不带用户ID查询怎么做分页?又比如更多的多维度的查询都没有shardingkey又怎么查询?
今年有个现象,实时数仓建设突然就被大家所关注。我个人在公众号也写过和转载过几篇关于实时数据仓库的文章和方案。
在直播、电商等业务场景中存在着大量实时数据,这些数据对业务发展至关重要。而在处理实时数据时,我们也遇到了诸多挑战,比如实时数据开发门槛高、运维成本高以及资源浪费等。
场景描述:今年有个现象,实时数仓的建设突然就被大家所关注。我个人在公众号也写过和转载过几篇关于实时数据仓库建设的文章和方案。
数据汇总是一个将原始数据简化为其主要成分或特征的过程,使其更容易理解、可视化和分析。本文介绍总结数据的七种重要方法,有助于理解数据实质的内容。
文章标题:《Two subsets of human marginal zone B cells resolved by global analysis of lymphoid tissues and blood》
领取专属 10元无门槛券
手把手带您无忧上云