首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何创建函数才能在processing 3中生成常规3D金字塔?

在Processing 3中创建常规3D金字塔,可以通过以下步骤实现:

  1. 首先,你需要在Processing 3中创建一个函数来生成金字塔的顶点坐标和面的连接关系。这个函数可以接受金字塔的参数,如底部边长、高度等,并返回一个包含顶点坐标和面连接关系的数据结构。
  2. 在函数中,你可以使用Processing 3的3D绘图函数来绘制金字塔。例如,你可以使用beginShape()函数开始定义一个形状,然后使用vertex()函数定义每个顶点的坐标,最后使用endShape()函数结束形状的定义。
  3. 在函数中,你还可以使用translate()函数将金字塔移动到适当的位置,并使用rotateX()rotateY()rotateZ()函数来旋转金字塔。
  4. 最后,你可以在Processing 3的setup()函数中调用这个函数来生成金字塔,并在draw()函数中使用background()函数来清空画布,并使用shape()函数来绘制金字塔。

以下是一个示例代码,展示了如何在Processing 3中创建常规3D金字塔:

代码语言:txt
复制
// 定义金字塔的参数
float baseSize = 200; // 底部边长
float height = 300; // 高度

// 生成金字塔的顶点坐标和面连接关系
PShape pyramid;

void setup() {
  size(800, 600, P3D);
  
  // 创建金字塔
  pyramid = createPyramid(baseSize, height);
}

void draw() {
  background(255);
  
  // 移动和旋转金字塔
  translate(width/2, height/2, 0);
  rotateX(frameCount * 0.01);
  rotateY(frameCount * 0.01);
  
  // 绘制金字塔
  shape(pyramid);
}

// 创建金字塔的函数
PShape createPyramid(float baseSize, float height) {
  PShape pyramid = createShape();
  pyramid.beginShape(TRIANGLES);
  
  // 金字塔的顶点坐标
  float halfSize = baseSize / 2;
  float topY = -height / 2;
  float bottomY = height / 2;
  
  pyramid.vertex(0, bottomY, 0); // 底部中心点
  pyramid.vertex(-halfSize, topY, -halfSize); // 左上角
  pyramid.vertex(halfSize, topY, -halfSize); // 右上角
  
  pyramid.vertex(0, bottomY, 0); // 底部中心点
  pyramid.vertex(halfSize, topY, -halfSize); // 右上角
  pyramid.vertex(halfSize, topY, halfSize); // 右下角
  
  pyramid.vertex(0, bottomY, 0); // 底部中心点
  pyramid.vertex(halfSize, topY, halfSize); // 右下角
  pyramid.vertex(-halfSize, topY, halfSize); // 左下角
  
  pyramid.vertex(0, bottomY, 0); // 底部中心点
  pyramid.vertex(-halfSize, topY, halfSize); // 左下角
  pyramid.vertex(-halfSize, topY, -halfSize); // 左上角
  
  pyramid.endShape();
  
  return pyramid;
}

这个示例代码中,createPyramid()函数接受金字塔的底部边长和高度作为参数,并返回一个PShape对象,其中包含金字塔的顶点坐标和面连接关系。在setup()函数中,我们创建了一个窗口,并调用createPyramid()函数来生成金字塔。在draw()函数中,我们使用background()函数来清空画布,并使用translate()rotateX()rotateY()函数来移动和旋转金字塔。最后,我们使用shape()函数来绘制金字塔。

请注意,以上示例代码仅为演示如何在Processing 3中创建常规3D金字塔的基本思路,具体的实现方式可能因个人需求和偏好而有所不同。如果你需要更复杂的金字塔形状或其他功能,可以根据自己的需求进行修改和扩展。

关于Processing 3的更多信息和教程,你可以参考腾讯云的Processing 3产品介绍页面:Processing 3产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

清华大学&英伟达最新|Occ3D:通用全面的大规模3D Occupancy预测基准

自动驾驶感知需要对3D几何和语义进行建模。现有的方法通常侧重于估计3D边界框,忽略了更精细的几何细节,难以处理一般的、词汇表外的目标。为了克服这些限制,本文引入了一种新的3D占用预测任务,旨在从多视图图像中估计目标的详细占用和语义。为了促进这项任务,作者开发了一个标签生成pipeline,为给定场景生成密集的、可感知的标签。该pipeline包括点云聚合、点标签和遮挡处理。作者基于Waymo开放数据集和nuScenes数据集构造了两个基准,从而产生了Occ3D Waymo和Occ3D nuScene基准。最后,作者提出了一个模型,称为“粗略到精细占用”(CTF-Occ)网络。这证明了在3D占用预测任务中的优越性能。这种方法以粗略到精细的方式解决了对更精细的几何理解的需求。

04
  • OpenCV SIFT特征算法详解与使用

    SIFT特征是非常稳定的图像特征,在图像搜索、特征匹配、图像分类检测等方面应用十分广泛,但是它的缺点也是非常明显,就是计算量比较大,很难实时,所以对一些实时要求比较高的常见SIFT算法还是无法适用。如今SIFT算法在深度学习特征提取与分类检测网络大行其道的背景下,已经越来越有鸡肋的感觉,但是它本身的算法知识还是很值得我们学习,对我们也有很多有益的启示,本质上SIFT算法是很多常见算法的组合与巧妙衔接,这个思路对我们自己处理问题可以带来很多有益的帮助。特别是SIFT特征涉及到尺度空间不变性与旋转不变性特征,是我们传统图像特征工程的两大利器,可以扩展与应用到很多图像特征提取的算法当中,比如SURF、HOG、HAAR、LBP等。夸张一点的说SIFT算法涵盖了图像特征提取必备的精髓思想,从特征点的检测到描述子生成,完成了对图像的准确描述,早期的ImageNet比赛中,很多图像分类算法都是以SIFT与HOG特征为基础,所有SIFT算法还是值得认真详细解读一番的。SIFT特征提取归纳起来SIFT特征提取主要有如下几步:

    03

    Feature Pyramid Networks for Object Detection

    特征金字塔是不同尺度目标识别系统的基本组成部分。但最近的深度学习对象检测器已经避免了金字塔表示,部分原因是它们需要大量的计算和内存。本文利用深卷积网络固有的多尺度金字塔结构构造了具有边际额外成本的特征金字塔。提出了一种具有横向连接的自顶向下体系结构,用于在所有尺度上构建高级语义特征图。该体系结构称为特征金字塔网络(FPN),作为一种通用的特征提取器,它在几个应用程序中得到了显著的改进。在一个基本的Fasater R-CNN系统中使用FPN,我们的方法在COCO检测基准上实现了最先进的单模型结果,没有任何附加条件,超过了所有现有的单模型条目,包括来自COCO 2016挑战赛冠军的条目。此外,我们的方法可以在GPU上以每秒6帧的速度运行,因此是一种实用而准确的多尺度目标检测解决方案。

    02

    图像特征点|SIFT特征点之图像金字塔

    计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

    04

    Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing

    在这篇文章中,我们提出了一个端到端的网络,称为Cycle-Dehaze,为单一图像去雾问题,它配对的有雾图像和其对应的图像进行训练。也就是说,我们通过以不成对的方式加入干净和模糊的图像来训练网络。此外,所提出的方法不依赖于大气散射模型参数的估计。我们的方法通过结合循环一致性和感知损失来增强CycleGAN方法,以提高纹理信息恢复的质量,并生成视觉上更好的无雾霾图像。典型地,用于去雾的深度学习模型将低分辨率图像作为输入并产生低分辨率输出。然而,在NTIRE 2018单幅图像去雾挑战中,提供了高分辨率图像。因此,我们应用双三次降尺度。从网络获得低分辨率输出后,我们利用拉普拉斯金字塔将输出图像提升到原始分辨率。我们在NYU-Depth、, I-HAZE, and O-HAZE数据集上进行了实验。大量实验表明,该方法从定量和定性两个方面改进了CycleGAN方法。

    02

    cvpr目标检测_目标检测指标

    Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper , we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art singlemodel results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 6 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

    04

    目标检测 | 基于扩展FPN的小目标检测方法

    摘要:小目标检测仍然是一个尚未解决的挑战,因为很难仅提取几个像素大小的小目标信息。尽管在特征金字塔网络中进行尺度级别的相应检测可以缓解此问题,但各种尺度的特征耦合仍然会损害小目标检测的性能。本文提出了扩展特征金字塔网络(EFPN,extended feature pyramid network),它具有专门用于小目标检测的超高分辨率金字塔层。具体来说,其设计了一个模块,称为特征纹理迁移(FTT,feature texture transfer),该模块用于超分辨率特征并同时提取可信的区域细节。此外,还设计了前景-背景之间平衡(foreground-background-balanced)的损失函数来减轻前景和背景的面积不平衡问题。在实验中,所提出的EFPN在计算和存储上都是高效的,并且在清华-腾讯的小型交通标志数据集Tsinghua-Tencent 100K和微软小型常规目标检测数据集MS COCO上产生了最好的结果。

    02

    PNEN:金字塔结构与Non-local非局部结构联合增强,提升low-level图像处理任务性能

    现在,用于low-level图像处理任务的神经网络通常是通过堆叠卷积层来实现的,每个卷积层仅包含来自一个小范围的上下文信息。随着更多卷积层的堆叠,卷积神经网络可以探索更多的上下文特征。但是,要充分利用远距离依赖关系较困难并且需要较多的计算量。由此,本文提出了一种新颖的non-local模块:金字塔non-local模块,以建立每个像素与所有剩余像素之间的连接。所提出的模块能够有效利用不同尺度的低层特征之间的成对依赖性。具体而言,首先通过学习由具有全分辨率的查询特征图和具有缩减分辨率的参考特征图所构成的金字塔结构来捕获多尺度相关性,然后利用多尺度参考特征的相关性来增强像素级特征表示。整个计算过程在同时考虑了内存消耗和计算成本。基于所提出的模块,本文还设计了一个金字塔non-local增强网络用于图像恢复任务中边缘保留的图像平滑处理,在比较三种经典的图像平滑算法中达到了最先进的性能。另外,可以将金字塔non-local模块直接合并到卷积神经网络中,以进行其他图像恢复任务,并可以将其集成到用于图像去噪和单图像超分辨率的现有方法中,以实现性能的持续改善。

    02

    SIFT特征点提取「建议收藏」

    计算机视觉中的特征点提取算法比较多,但SIFT除了计算比较耗时以外,其他方面的优点让其成为特征点提取算法中的一颗璀璨的明珠。SIFT算法的介绍网上有很多比较好的博客和文章,我在学习这个算法的过程中也参看网上好些资料,即使评价比较高的文章,作者在文章中对有些比较重要的细节、公式来历没有提及,可能写博客的人自己明白,也觉得简单,因此就忽略了这些问题,但是对刚入门的人来说,看这些东西,想搞清楚这些是怎么来的还是比较费时费力的。比如SIFT算法中一个重要的操作:求取描述子的主方向。好多文章只是一提而过或忽略,然后直接给出一个公式,SIFT算法的原作者也提使用抛物线插值,但是具体怎么插的就不太详尽了,对于初学者来说更是不知所云。因此本文打算在参看的文章上对有关这些细节给出一些比较详细的说明,还有本文尽量对操作过程配备对应图片或示意图说明,同时附上robwhesss开源SIFT C代码对应程序块并给予注解,方便理解。

    02
    领券