首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

微服务架构开发实战:微服务的高级主题,自动扩展的常见模式

在典型的生产场景中,创建附加服务不是在首次发生超过阈值时完成的。最合适的方法是定义一个滑动窗口或等待期。 以下是一些常见的例子。...●一个响应滑动窗口的例子是,设置了60%的响应时间,当一个特定的事务总是超过设定的阈值60秒的采样窗口,那么就增加服务实例。...●在CPU滑动窗口中,如果CPU利用率一直超过70%,并超过5分钟的滑动窗口,那么就创建一个新的实例。...●例外滑动窗口的例子是,当80%的事务在60秒的滑动窗口,或者有10个事物连续执行导致特定的系统异常( 例如,由于耗尽线程池导致的连接超时),在这种情况下,就创建一个新的服务实例。...在很多情况下,通常会设定一个比实际预期的门槛更低的门槛。例如,不是将CPU利用率阈值设置为80%,而是将其设置为60%,这样,系统在停止响应之前就有足够的时间来启动一个实例。

33820

·人脸识别MTCNN解析

(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值; (2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。...(3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。...这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法,而是用于在目标检测中用于提取分数最高的窗口的。...例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。...这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。

1.5K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    让车辆“学会”识别车道:使用计算机视觉进行车道检测

    简单通道检测地址:https://github.com/kenshiro-o/CarND-LaneLines-P1 下面的代码展示了我们如何在HLS上为白色和黄色(我们的车道颜色)设置阈值,并产生二进制图像...我们现在可以将阈值应用到我们的鸟瞰图上: ? 直方图 然后,我们在图像的下半部分计算y方向的二进制阈值图像的直方图,以识别像素强度最高的x位置: ?...找到线路并绘制车道区域 滑动窗口 由于我们现在知道像素的起始x位置(从图像的底部)最有可能产生一条车道线,我们将运行一个滑动窗口搜索,试图“捕获”车道线的像素坐标。...v=fJBHd5S6jgo&feature=youtu.be 结论 我们已经介绍了如何执行摄像机标定,颜色和梯度阈值,以及透视变换和滑动窗口来识别车道线。...我们相信这个项目需要很多改进,比如: 用LAB和YUV颜色空间进行实验来决定我们是否能产生更好的颜色阈值; 使用卷积代替滑动窗口来识别热像素; 产生一个前帧的线系数的指数移动平均值,当我们的像素检测失败时使用它

    3.2K60

    Python中如何使用 collections 模块中高级数据结构如 namedtuple、deque

    例如,处理滑动窗口问题或实现宽度优先搜索(BFS)等场景。如何定义和使用 deque?我们来看一个 deque 的用例,演示如何高效地向两端添加和删除元素。...这样,当访问不存在的键时,返回的是默认值 0。使用 defaultdict(list) 创建了一个字典 multi_value_dict,每个键的默认值为列表,可以方便地向列表中添加元素。...假设你要分析一篇文章的内容,统计每个单词的出现次数,找出最常出现的单词,并在滑动窗口中查找某些关键单词的序列位置。...: {dict(word_positions)}")# 使用 deque 实现滑动窗口,寻找关键单词序列window = deque(maxlen=3)target_sequence = ['python...使用 defaultdict(list) 存储了每个单词在文章中的索引位置,便于快速查找。使用 deque 实现了一个滑动窗口,用于查找特定单词序列的位置。

    10010

    Google Falcon 传输协议规范V0.9

    ○ 当收到确认已收到 PSN 值为 RBPSN 的请求滑动窗口数据包的 ACK 时,必须将 RBPSN 更新为尚未确认的数据包的下一个最高 PSN(使用模 2 的32次方算法)。...○ 收到确认已收到 PSN 值为 DBPSN 的数据滑动窗口数据包的 ACK 时,必须将 DBPSN 更新为尚未确认的数据包的下一个最高 PSN(使用模 2 的32次方算法)。...如果在同一个滑动窗口中有一个足够大的接收 PSN,则发送器可以尽早重传未接收的 PSN - 此阈值定义大多少才足够。该阈值本质上用作缓冲区,以消除网络中数据包丢失与重新排序之间的歧义。...○ 在收到 PSN 值为 RBPSN 的请求滑动窗口数据包时,必须将 RBPSN 更新为尚未接收数据包的下一个最高 PSN(使用模 2的32次方算法)。...○ 当接收到 PSN 值为 DBPSN 的数据滑动窗口数据包时,必须将 RBPSN 更新为未接收数据包的下一个最高 PSN(使用模 2 的32次方算法)。

    10810

    【系统设计】系统设计基础:速率限制器

    更新令牌:如果获取的令牌小于持续时间 d 的限制,则接受请求并附加令牌。 该算法具有内存效率,因为我们为我们的应用程序为每个用户节省了更少的数据量。这里的问题是它可能导致分布式环境中的竞争条件。...滑动日志: 滑动日志算法涉及在用户级别维护带有时间戳的请求日志。系统将这些请求时间排序在一个集合或一个表中。它丢弃所有时间戳超过阈值的请求。我们每一分钟都在寻找旧的请求并将它们过滤掉。...然后我们计算日志的总和来确定请求率。如果请求将超过阈值速率,则保留它,否则提供服务。 该算法的优点是不受固定窗口边界条件的影响。速率限制的执行将保持精确。...由于系统会跟踪每个消费者的滑动日志,因此不会出现挑战固定窗口的踩踏效应。 但是,为每个请求存储无限数量的日志可能会很昂贵。计算也很昂贵,因为每个请求都需要计算消费者先前请求的总和,可能跨服务器集群。...滑动窗口方法是最好的方法,因为它提供了扩展速率限制的灵活性和良好的性能。速率窗口是一种向 API 使用者呈现速率限制数据的直观方式。

    1K30

    使用OpenCV实现车道线检测

    本文介绍了使用计算机视觉技术进行车道检测的过程,并引导我们完成识别车道区域、计算道路RoC 和估计车道中心距离的步骤。...图2 左图:之前、右侧:之后 阈值(preprocess.py:22) 现在车道线是平行的,下一步将它们从输入图像上分割出来。输入图像包含RGB3个通道,车道线为白色或黄色。...车道像素查找(laneDetection.py:4~70) 预处理输入图像后,将在图像空间中确定并绘制车道。方法是在二进制图像(阈值图像)的下半部分绘制非零像素直方图,以观察模式: ?...滑动窗口方法的概念将应用在这里,以下视频说明了滑动窗口的概念,图5中是结果。 ? 图5.滑动窗口的概念应用于图 4 的结果。...识别车道面积(laneDetection.py:85~149) 滑动窗口有助于估计每个车道区域的中心,使用这些 x 和 y 像素定位函数search_around_poly()可以适合二阶多项曲线。

    1.5K21

    限速器算法

    系统会将这些日志保存在按时间排序的哈希集或表中,并丢弃时间戳超过阈值的日志。当接收到一个请求后,会通过计算日志的总数来决定请求速率。如果请求超过速率阈值,则暂停处理该请求。...为了使用本地检查,需要放宽速率检查条件,并使用最终一致性模型。例如,每个节点都可以创建一个数据同步周期,用来与中央数据存储同步。...每个窗口都有计数,且计数不能超过限速器设置的阈值。当前窗口和当前窗口的前一个窗口中保存了计数变量,而滑动窗口的计数是通过计算获得的。...,再加上当前窗口的计数,算出滑动窗口的当前计数 如果要判断滑动窗口是否能够允许n个事件,则使用滑动窗口的当前计数+n与计数阈值进行比较。...如果小于计数阈值,则允许事件,并让滑动窗口计数+n,否则返回false。 如果diffSize滑动窗口和当前窗口有重叠部分,此时不需要调整窗口。AllowN中的运算与上述逻辑相同:

    24110

    DeepLearning.ai学习笔记(四)卷积神经网络 -- week3 目标检测

    ,所以可以更改窗口大小,从而识别并定位出车辆的位置。...在介绍卷积滑动窗口之前我们首先要知道如何把神经网络的全连接层转化成卷积层,下面是使用了全连接层的网络结构 那么如何将全连接层转化成卷积层呢?...下面,假设我们的测试图大小是16*16,并令滑动窗口大小是14*14的(为了方便理解,下图用蓝色清楚地表明了14*14窗口的大小),步长是2,所以这个测试图可以被窗口划分成4个部分。...当然0.5这个阈值是人为设定的,没有深入的科学探究,所以如果希望结果更加精确,也可以用0.6或0.7设为阈值,但是不建议用小于0.5的阈值。...不同的是也需要分配到和对象形状交并比最高的Anchor Box.

    69160

    11: 边缘检测

    3,取局部极大值: 梯度其实已经表示了轮廓,但为了进一步筛选,可以在上面的四个角度方向上再取局部极大值: 比如,A点在45°方向上大于B/C点,那就保留它,把B/C设置为0。...4,滞后阈值: 经过前面三步,就只剩下0和可能的边缘梯度值了,为了最终确定下来,需要设定高低阈值: 像素点的值大于最高阈值,那肯定是边缘(上图A) 同理像素值小于最低阈值,那肯定不是边缘 像素值介于两者之间...,如果与高于最高阈值的点连接,也算边缘,所以上图中C算,B不算 Canny推荐的高低阈值比在2:1到3:1之间。...(0)Copy to clipboardErrorCopied 代码中我用了番外篇:Otsu阈值法中的自动阈值分割,如果你不太了解,大可以使用传统的方法,不过如果是下面这种图片,推荐用Otsu阈值法。...练习 (选做)如果你不太理解高低阈值的效果,创建两个滑动条来调节它们的值看看: 小结 Canny是用的最多的边缘检测算法,用cv2.Canny()实现。

    52220

    接口限流算法有哪些??

    0x01:限流 限流顾名思义,提前对各个类型的请求设置最高的QPS阈值,若高于设置的阈值则对该请求直接返回,不再调用后续资源。...限流需要结合压力测等,了解系统的最高水位,也是在实际开发中应用最多的一种稳定性保障手段。 应用场景:如秒杀、抢购、发帖、评论、恶意爬虫等。...计数器限流允许出现 2*permitsPerSecond 的突发流量,可以使用滑动窗口算法去优化。 滑动窗口计数器 滑动窗口其实就是细分之后的计数器! 这样假设,先把一分钟划分成6段!...那么此时的6个分段是 10 ~ 20、20 ~ 30、30 ~ 40、40 ~ 50、50 ~ 60、60 ~ 70,然后统计规则还跟上面一样。所以只有划分的越细,请求限制越平滑。...令牌桶的另外一个好处是可以方便的改变速度。一旦需要提高速率,则按需提高放入桶中的令牌的速率。一般会定时(比如100毫秒)往桶中增加一定数量的令牌,有些变种算法则实时的计算应该增加的令牌的数量。

    1K40

    RD-VIO: 动态环境下移动增强现实的稳健视觉惯性里程计

    滑动窗口VIO 系统采用了滑动窗口方法,因此首先介绍了一个具有滑动窗口优化的基线VIO系统(Baseline-VIO),并定义了大部分符号。...接着介绍了如何使用视觉惯性PnP来获得新帧状态的初始估计。最后,说明了系统如何将新帧条件性地标记为关键帧,并在滑动窗口中进行优化或清除,以应对低位移问题。 B....最终根据共识集的质量选择出最佳的内点集,从而确保匹配的稳健性和准确性。 2D-2D匹配阶段:系统描述了在滑动窗口策略中如何处理无法跟踪的地标,以及如何补充新的地标以保持足够的数量。...还介绍了如何根据3D-2D匹配训练极线距离阈值,并将其用于2D-2D匹配阶段的阈值设定。最后描述了如何追踪历史匹配,并根据一定条件将关键点标记为静态并进行三角测量。...与基线VIO相比,SF-VIO在许多序列上都显示出了显著的改进。 我们测量了系统每个模块的运行时间。我们将VINS-Mono配置为具有8帧大小的滑动窗口,并停用了其后端,以确保两个系统之间的公平比较。

    38511

    译文 | 与TensorFlow的第一次接触 第五章:多层神经网络

    然后窗口向右滑动一个像素;该部分的信息与隐藏层中的第二个神经元相连接。一直持续这个动作直到整体平面从上到下,从左到右被窗口全部转换: ?...对于我们描述的卷积层,经常在卷积层后面加一个池化层。池化层简单的浓缩卷积层的输出结果并创建一个压缩版本的信息并输出。本例子中,我们使用2*2区域的卷积层,通过池化将其压缩成一个点: ?...通过池化层将24*24的卷积结果转变成了12*12排列,该排列中的每一元素都是来源于2*2区域。不像是卷积层,这里的数据是平的,并不是由一个滑动窗口创建。...因此只分析代码的整体,并不会深入到TensorFlow参数的很多细节中。 我们需要定义几个参数来表示卷积与池化层。在每个维度中我们使用步长为1(滑动窗口步长),并用0来padding的模型。...为演示如何做到这样,我会创建64个filters且窗口大小为5*5的第二层卷积层。此时我们会需传递32个channels,因为这是前一层的输出结果: ?

    67040

    经典限流算法设计与实现

    经典限流算法设计与实现 固定窗口限流算法 滑动窗口限流算法 漏桶算法 令牌桶算法 固定窗口限流算法 维护一个计数器,将单位时间段当做一个窗口,计数器记录该窗口接受请求的次数: 当次数少于限流阈值,就允许访问...,并且计数器+1 当次数大于限流阈值,就拒绝访问 当前的时间窗口过去之后,计数器清零 假设单位时间是一秒,限流阈值为3。...放行请求 counter++; return true; } } 但是,这种算法有一个很明显的临界问题:假设限流阈值为5个请求,单位时间窗口是1s,如果我们在单位时间内的前...虽然都没有超过阈值,但是如果算0.8-1.2s,则并发数高达10,已经超过单位时间1s不超过5阈值的定义了。 滑动窗口限流算法 滑动窗口限流解决固定窗口临界值的问题。...然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s到达的,0.8~1.0s对应的计数器就会加1。 我们来看下滑动窗口是如何解决临界问题的?

    61721

    Kaggle冠军告诉你,如何从卫星图像分割及识别比赛中胜出?

    过采样在小样本图像上以较小的步长来滑动采样窗口,在大样本图像上以比默认值更大的步长来滑动采样窗口; 4....我只使用RGB频段的图像数据,取平均值,并训练多个融合网络,对大型车辆进行分割。 7. 农作物。我先将图像的尺度降低为1024×1024,然后利用滑动窗口重叠采样,得到尺度为256x256的图像块。...图1:辨识所有类别的完整网络示意图 你是如何进行特征提取和数据预处理? 我使用不同大小的滑动窗口,对A频段和M频段的图像分开处理。另外,我还在一些融合模型中对小样本类别进行过采样操作。...在上面也提到过,我仅对道路和建筑物周围的车辆进行滑动窗口采样,用于网络训练和预测,这有助于减少训练所需的图像数量,并允许对车辆图像块进行针对性的过采样。...然后我设置了这个合并网络识别区域的最小像素为200,目的是只提取大型车辆。对于小轿车的识别,基本上只是采取多个小轿车网络预测的平均值,并删除与大型车辆重叠的轮廓和超过区域像素阈值的多边形。

    2.8K90

    Spring Boot - 利用Resilience4j-Circuitbreaker实现断路器模式_防止级联故障

    限流(Rate Limiter):限制进入系统的请求速率,防止系统过载。这可以通过令牌桶算法或滑动窗口算法实现。...Order service 重点关注是如何配置断路器,并通过执行器监控其状态的。...下面是对 order-service 断路器实例每个配置项的解释: 滑动窗口类型: COUNT_BASED:这指定了用于跟踪失败的滑动窗口是基于失败的调用次数。...Resilience4j 支持两种类型的滑动窗口:COUNT_BASED(基于次数)和 TIME_BASED(基于时间)。 故障率阈值: 50:这设置了断路器打开的故障率阈值。...滑动窗口大小: 10:这配置了用于跟踪请求和失败的滑动窗口的大小。滑动窗口的大小必须大于计算故障率所需的最小调用次数。 注册健康指标: true:这个标志指示是否为断路器注册健康指标。

    1.1K00

    object detection中的非极大值抑制(NMS)算法

    这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。...例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。...这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。...三、NMS 原理 首先引入几个概念: 候选框列表B B所对应的置信度列表S B中置信度最大的那个框为M 最终的检测结果为D IOU值(此处不再展开) 人为设定的阈值Nt 对于Bounding...(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值; (2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。

    5.5K50

    如何通过限流来干掉那些处理不过来的请求

    为什么要限流 原因很简单,资源是有限的,我们的系统的接待能力也是有限的,对于那些已经超出系统接待能力的请求我们应该尽可能早的识别出来并让其等待或拒绝这些请求。...我们假设一种情况: 系统线路的 QPS 为 100,第一秒有 90 个请求,并且所有的请求都在最后 100ms 进入,这个时候请求没有达到阈值,是不会限流的。...滑动窗口法 滑动窗口法是在计数器法的基础上演进而来的,也是采用计数的方式来统计过去一段时间的请求数。...每过去 100ms,统计窗口就向右滑动一小格(这就是滑动窗口法的由来),最新的数据记录在最右边位置,最左一格的数据将会被丢弃(具体实现上会有所差异)。...假设限流 QPS 大小为 X,窗口均分为 N 份,那么理论上可以达到的峰值 QPS为X * (N + 1) / N,它显然是大于 X 的。 不过我们多均分几份以后,影响就会大大减少。

    60630

    软件系统限流的底层原理解析

    2.2 滑动窗口算法 滑动窗口算法是固定窗口计数器算法的一个改进,它通过覆盖多个时间段来平滑请求流量,避免瞬时高峰。...,以恒定速率从桶中取出请求进行处理,无论请求到达的频率如何,都保证请求以均匀的速度被处理,从而平滑流量并防止流量突增。...限流策略 限流策略是确保应用程序能够处理预期负载并防止过载的一系列规则和措施。 阈值设置 阈值设置是限流策略的基础,它决定了系统在单位时间内能够处理的最大请求数量。...RateLimiterV2实例,并设置阈值。...// 它接受路由的路径、桶的容量、每秒填充的令牌数和请求处理的阈值作为参数, // 并创建一个新的RateLimiterV2实例,将其存储在RouteLimiterMap中。

    34110
    领券