算法终止条件 ( 切割点 ) : 用户可以指定聚类操作的算法终止条件 , 即上面图示中的切割点 , 如 :
① 聚类的最低个数 : 聚合层次聚类中 ,
n
个样本 , 开始有
n
个聚类 , 逐步合并..., 聚类个数逐渐减少 , 当聚类个数达到最低值
min
, 停止聚类算法 ;
② 聚类最高个数 : 划分层次聚类中 ,
n
个样本 , 开始有
1
个聚类 , 逐步划分 , 聚类个数逐渐增加..., 当聚类个数达到最大值
max
, 停止聚类算法 ;
③ 聚类样本的最低半径 : 聚类的数据样本范围不能无限扩大 , 指定一个阈值 , 只有将该阈值内的样本放入一组 ; 半径指的是所有对象距离其平均点的距离...基于密度的聚类方法 算法优点 :
① 排除干扰 : 过滤噪音数据 , 即密度很小 , 样本分布稀疏的数据 ;
② 增加聚类模式复杂度 : 聚类算法可以识别任意形状的分布模式 , 如上图左侧的聚类分组模式...基于方格的方法优点 : 处理速度很快 , 将每个方格都作为一个数据 , 如果分成 少数的几个方格进行聚类操作 , 聚类瞬间完成 ; 其速度与数据集样本个数无关 , 与划分的数据方格个数有关 ;
3 .