Machine Learning Mastery 机器学习算法教程 机器学习算法之旅 利用隔离森林和核密度估计的异常检测 机器学习中的装袋和随机森林集成算法 从零开始实现机器学习算法的好处 更好的朴素贝叶斯:从朴素贝叶斯算法中收益最大的 12 个技巧 机器学习的提升和 AdaBoost 选择机器学习算法:Microsoft Azure 的经验教训 机器学习的分类和回归树 什么是机器学习中的混淆矩阵 如何使用 Python 从零开始创建算法测试工具 通过创建机器学习算法的目标列表来获得控制权 机器学习中算法
时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。统计学上,一个时间序列即是一个随机过程的实现。时间序列按其统计特性可以分为平稳时间序列和非平稳时间序列两类。在实际生活中遇到的序列,大多数是不平稳的。
当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。然后,在样本中估计模型,并使用一些误差指标来评估其预测性能。
半监督时间序列分类可以有效地缓解标记数据缺乏的问题。然而,现有的方法通常忽略了模型的解释性,使得人类难以理解模型预测背后的原理。Shapelets是一组具有高度解释性的判别子序列,可用于时间序列分类任务。基于Shapelets学习的方法已显示出有前景的分类性能。遗憾的是,在没有足够的标记数据的情况下,通过现有方法学习的Shapelets通常判别性较差,甚至与原始时间序列的任何子序列都不相似。
作者:Courtney Cochrane 机器之心编译 参与:Nurhachu Null、路 本文简要讲解了交叉验证和嵌套交叉验证,并介绍了针对单个时序数据和多个时序数据的嵌套交叉验证方法。 本文讨
1)在不造成数据泄露的情况下,对时序数据进行分割;2)在独立测试集上使用嵌套交叉验证得到误差的无偏估计;3)对包含多个时序的数据集进行交叉验证。
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。本文将演示如何在 R 中使用 LSTM 实现时间序列预测。
时间序列异常检测是一项重要的任务,其目标是从时间序列的正常样本分布中识别异常样本。这一任务的最基本挑战在于学习一个能有效识别异常的表示映射。
在本文中,我们将介绍三种提高循环神经网络性能和泛化能力的高级技术。我们演示有关温度预测问题的三个概念,我们使用建筑物屋顶上的传感器的时间数据序列。
为了使机器具有人类的想象力,深度生成模型取得了重大进展。这些模型能创造逼真的样本,尤其是扩散模型,在多个领域表现出色。扩散模型解决了其他模型的限制,如 VAEs 的后验分布对齐问题、GANs 的不稳定性、EBMs 的计算量大和 NFs 的网络约束问题。因此,扩散模型在计算机视觉、自然语言处理等方面备受关注。
根据频率,时间序列可以是每年(例如:年度预算),每季度(例如:支出),每周(例如:销售数量),每天(例如天气),每小时(例如:股票价格),分钟(例如:来电提示中的呼入电话),甚至是几秒钟(例如:网络流量)。
2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能
使用ARIMA模型,您可以使用序列过去的值预测时间序列(点击文末“阅读原文”获取完整代码数据)。
来源:机器之心 本文长度为2527字,建议阅读5分钟 本文为你介绍如何在Keras深度学习库中搭建用于多变量时间序列预测的LSTM模型。 长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。 这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你
ARIMA是首字母缩写词,代表自动回归移动平均。它是一类模型,可在时间序列数据中捕获一组不同的标准时间结构。
本文约1700字,建议阅读5分钟本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 全文链接:http://tecdat.cn/?p=25133 2017 年年中,R 推出了 Keras 包
Transformer目前已经成为人工智能领域的主流模型,应用非常广泛。然而Transformer中注意力机制计算代价较高,随着序列长度的增加,这个计算量还会持续上升。
长短期记忆网络(LSTM)是一种强大的递归神经网络,能够学习长观察值序列。 LSTM的一大优势是它们能有效地预测时间序列,但是作这种用途时配置和使用起来却较为困难。 LSTM的一个关键特性是它们维持一个内部状态,该状态能在预测时提供协助。这就引出了这样一个问题:如何在进行预测之前在合适的 LSTM 模型中初始化状态种子。 在本教程中,你将学习如何设计、进行试验并解释从试验中得出的结果,探讨是用训练数据集给合适的 LSTM 模型初始化状态种子好还是不使用先前状态好。 在完成本教程的学习后,你将了解: 关于如
长短期记忆网络(LSTM)是一种强大的递归神经网络,能够学习长观察值序列。 LSTM的一大优势是它们能有效地预测时间序列,但是作这种用途时配置和使用起来却较为困难。 LSTM的一个关键特性是它们维持一个内部状态,该状态能在预测时提供协助。这就引出了这样一个问题:如何在进行预测之前在合适的 LSTM 模型中初始化状态种子。 在本教程中,你将学习如何设计、进行试验并解释从试验中得出的结果,探讨是用训练数据集给合适的 LSTM 模型初始化状态种子好还是不使用先前状态好。 在完成本教程的学习后,你将了解: 关
大多数现代开源AutoML框架并没有广泛地涵盖时间序列预测任务。本文中我们将深入地研究AutoML框架之一FEDOT,它可以自动化时间序列预测的机器学习管道设计。因此,我们将通过时间序列预测的现实世界任务详细解释FEDOT的核心正在发生什么。
本文全面概述了深度学习用于时间序列异常检测的最新架构,提供了基于策略和模型的方法,并讨论了各种技术的优点和局限性。此外,还举例说明了近年来深度学习在时间序列异常检测中各领域的应用。
虽然这些模型可以证明具有高度的准确性,但它们有一个主要缺点 - 它们通常不会解释“冲击”或时间序列的突然变化。让我们看看我们如何使用称为卡尔曼滤波器的模型来解决这个问题。
选自machinelearningmastery 机器之心编译 参与:朱乾树、路雪 长短期记忆循环神经网络等几乎可以完美地模拟多个输入变量的问题,这为时间序列预测带来极大益处。本文介绍了如何在 Keras 深度学习库中搭建用于多变量时间序列预测的 LSTM 模型。 诸如长短期记忆(LSTM)循环神经网络的神经神经网络几乎可以无缝建模具备多个输入变量的问题。 这为时间序列预测带来极大益处,因为经典线性方法难以适应多变量或多输入预测问题。 通过本教程,你将学会如何在 Keras 深度学习库中搭建用于多变量时间
循环神经网络是一类人工神经网络,其中节点之间的连接可以创建一个循环,允许某些节点的输出影响对相同节点的后续输入。涉及序列的任务,如自然语言处理、语音识别和时间序列分析,非常适合 RNN。与其他神经网络不同,RNN 具有内部存储器,允许它们保留来自先前输入的信息,并根据整个序列的上下文做出预测或决策。
11月9日,云+社区技术沙龙“高效智能运维”圆满落幕。本期沙龙围绕运维展开了一场技术盛宴,从AIOps、Serverless DevOps、蓝鲸PaaS平台、K8S等分享关于业务运维的技术实践干货,同时带来腾讯海量业务自研上云实践,推动传统运维向云运维转型。下面是张戎老师关于机器学习算法在时间序列的异常检测,故障的根因分析,时间序列预测方面的应用的内容分享。
我们将使用一个名为“来自美国夏威夷Mauna Loa天文台的连续空气样本的大气二氧化碳”的数据集,该数据集从1958年3月至2001年12月期间收集了二氧化碳样本。我们可以提供如下数据:
使用ARIMA模型,您可以使用序列过去的值预测时间序列。在本文中,我们从头开始构建了一个最佳ARIMA模型,并将其扩展到Seasonal ARIMA(SARIMA)和SARIMAX模型。
用于R语言的多层感知器(MLP)和极限学习机(ELM)进行时间序列预测。请注意,由于神经网络无法利用GPU处理,因此大型网络的训练速度往往很慢(点击文末“阅读原文”获取完整代码数据)。
时间序列是记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于揭示可用数据中隐含的信息财富至关重要。随着图神经网络(GNNs)的最新进展,基于GNN的时间序列分析方法大幅增加。这些方法可以明确地建模时序和变量间的关系,而传统的和其他基于深度神经网络的方法则难以做到。在这项调查中,我们对图神经网络在时间序列分析中的应用进行了全面回顾(GNN4TS),涵盖了四个基本维度:预测、分类、异常检测和填补。我们的目标是指导设计师和从业者了解、构建应用程序,并推进GNN4TS的研究。首先,我们提供了一个全面的面向任务的GNN4TS分类法。然后,我们介绍和讨论代表性研究成果,并介绍GNN4TS的主流应用。最后,我们全面讨论了潜在的未来研究方向。这项调查首次汇集了大量关于基于GNN的时间序列研究的知识,突出了图神经网络在时间序列分析中的基础、实际应用和机遇。
LSTM 网络是一种循环神经网络 (RNN),它通过循环时间步长和更新网络状态来处理输入数据。网络状态包含在所有先前时间步长中记住的信息。您可以使用 LSTM 网络使用先前的时间步长作为输入来预测时间序列或序列的后续值。要训练 LSTM 网络进行时间序列预测,请训练具有序列输出的回归 LSTM 网络,其中响应(目标)是训练序列,其值偏移了一个时间步长。换句话说,在输入序列的每个时间步,LSTM 网络学习预测下一个时间步的值。
在多个时间序列传感器上开发一个监测系统 照片由 lovely shots于 Unsplash 尽管多年来收集不同来源的大量数据变得更加容易,但公司需要确保他们正在收集的数据能够带来价值。为了帮助从数据中收集洞察力,机器学习和分析已经成为趋势性工具。由于这些领域需要实时的洞察力,大量不受欢迎的数据会造成实际问题。 在做出决定之前,关键是在采取行动之前,我们必须问:我们的数据中是否存在可能歪曲算法分析结果的异常情况?如果异常情况确实存在,关键是我们要自动检测并减轻其影响。这可以确保我们在采取行动之前得到尽可能
欧洲航天局科学数据中心(the European Space Agency Science Data Center,简称ESDC)利用TimescaleDB扩展切换到用PostgreSQL来存储他们的数据。ESDC的各种数据,包括结构化的、非结构化的和时间序列指标在内接近数百TB,还有使用开源工具查询跨数据集的需求。
结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
本文探讨了如何使用向量自回归模型(VAR)进行时间序列预测,并提出了基于矩阵分解和并行计算的优化方法。首先,介绍了VAR模型的基本原理和常见应用。然后,详细阐述了如何利用基于优化的方法来找到最佳参数,并使用QR分解来加速计算。最后,探讨了如何进一步改进VAR模型以增强其性能和灵活性。
本文的目的是为了解释 Grafana Loki 服务的设计动机。本文档并不会深入描述设计的所有细节,但希望能够对一些关键点进行说明,使我们能够提前发现任何明显的错误。本文主要会回答以下几个相关的问题:我们将如何构建它,为什么还要构建它,可以用于什么场景以及谁会使用它。
差分是一个广泛用于时间序列的数据变换。在本教程中,你将发现如何使用Python将差分操作应用于时间序列数据。 完成本教程后,你将学到: 关于差分运算,包括延迟差分的配置和差分序列。 如何开发手动实现的
时间序列分析中的时间序列分类(TSC)是关键任务之一,具有广泛的应用,如人体活动识别和系统监测等。近年来,深度学习在TSC领域逐渐受到关注,具有自动从原始时间序列数据中学习并抽取有意义特征的能力。
最近有一个粉丝问过我一个问题,觉得挺有意思,分享给大家。经过简化后大概就是有一个长这样的时间序列数据? 可以看到,一共有15行数据,其中有一些行的value是空值, 现在想在不改变原数据的情况下取出从
顾名思义,时间序列就是按照时间顺利排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。该技术有以下三个基本特点:
众所周知,人体运动合成是一项复杂且尚未满足的需求。现有技术受到缺乏高质量捕获数据的限制,为训练目的获取这些数据可能很昂贵——尤其是在当前的技术限制下,例如人类慢动作视频。
如果你正在处理时间序列数据,那么就跟云朵君一起学习如何根据预测性能来比较和选择时间序列模型。
领取专属 10元无门槛券
手把手带您无忧上云