首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在不损失精度的情况下解码NSDecimalNumber?

NSDecimalNumber是Foundation框架中的一个类,用于处理高精度的十进制计算。与普通的浮点数类型相比,NSDecimalNumber可以避免精度丢失的问题,并且可以进行更准确的数值计算。

在解码NSDecimalNumber时,我们需要注意以下几点:

  1. 确保使用正确的编码和解码格式:在将NSDecimalNumber编码为二进制数据或将二进制数据解码为NSDecimalNumber时,需要使用合适的编码和解码格式。常见的编码格式包括十六进制、Base64等。
  2. 使用适当的精度控制:NSDecimalNumber可以指定小数位数和舍入规则,以控制计算结果的精度。在解码时,需要根据具体的需求设置合适的精度控制参数。
  3. 调用合适的解码方法:Foundation框架提供了多个方法用于将二进制数据解码为NSDecimalNumber,如initWithDecimal:、initWithMantissa:exponent:isNegative:等。选择合适的解码方法取决于编码时所使用的格式和精度控制参数。

虽然在问题描述中要求不提及具体的云计算品牌商,但腾讯云也提供了一系列与云计算相关的产品和服务,可以在使用NSDecimalNumber时提供帮助和支持。

总结起来,解码NSDecimalNumber时,我们需要确定编码和解码格式、精度控制参数,并选择合适的解码方法进行操作,以确保在不损失精度的情况下获得正确的解码结果。

相关链接:NSDecimalNumber Class Reference

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 神经网络架构搜索——可微分搜索(Latency-DARTS)​

    可微分的神经架构搜索方法在自动机器学习中盛行,主要是由于其搜索成本低,设计搜索空间灵活。然而,这些方法在优化网络方面存在困难,因此搜索到的网络往往对硬件不友好。本文针对这一问题,在优化中加入可微分的时延损失项,使搜索过程可以在精度和时延之间进行平衡系数的权衡。延迟预测模块(LPM)是对每个网络架构进行编码,并将其输入到一个多层回归器中,通过随机抽样收集训练数据,并在硬件上对其进行评估。本文在NVIDIA Tesla-P100 GPU上评估了该方法。在100K采样架构(需要几个小时)的情况下,延迟预测模块的相对误差低于10%。嵌入延迟预测模块,搜索方法可以减少20%的延迟,同时保留了精度。本文的方法还能简洁的移植到广泛的硬件平台上,或用于优化其他不可微的因素,如功耗。

    02

    基于机器学习的脑电病理学诊断

    机器学习(Machine learning, ML)方法有可能实现临床脑电(Electroencephalography, EEG)分析的自动化。它们可以分为基于特征的方法(使用手工制作的特征)和端到端的方法(使用学习的特征)。以往对EEG病理解码的研究通常分析了有限数量的特征、解码器或两者兼而有之。对于I)更详细的基于特征的EEG分析,以及II)两种方法的深入比较,我们首先开发了一个全面的基于特征的框架,然后将该框架与最先进的端到端方法进行比较。为此,我们将提出的基于特征的框架和深度神经网络(包括EEG优化的时间卷积网络(temporal convolutional network, TCN))应用于病理性和非病理性EEG分类。为了进行强有力的比较,我们选择了天普大学医院(Temple University Hospital, TUH)的异常EEG语料库(2.0.0版),其中包含大约3000个EEG记录。结果表明,所提出的基于特征的解码框架可以达到与现有深度神经网络相同的精度。我们发现这两种方法的准确率都在81%到86%的范围内。此外,可视化和分析表明,这两种方法使用了相似的数据方面,例如,在颞叶电极位置处的delta和theta波段功率。我们认为,由于临床标签之间的不完全一致性,目前的二值EEG病理解码器的准确率可能达到90%左右,并且这种解码器已经在临床上有用,例如在临床EEG专家很少的领域。我们提出的基于特征的框架是开源的,从而为EEG机器学习研究提供了一个新的工具。本文发表在Neuroimage杂志。

    02

    AAAI|MetaDelta:一种少样本图像分类的元学习系统AAAI|MetaDelta:一种少样本图像分类的元学习系统

    今天给大家介绍清华大学YudongChen等人发表在AAAI上的一篇文章 “MetaDelta:AMeta-LearningSystemforFew-shotImageClassifification” 。现有的元学习算法很少考虑未知数据集的时间和资源效率或泛化能力,这限制了它们在实际场景中的适用性。在这篇文章中,作者提出了一种新的实用的元学习系统MetaDelta,用于小镜头图像分类。MetaDelta由两个核心组件组成:(1)由中央控制器监督的多个meta-learners以确保效率,(2)一个元集成模块负责集成推理和更好的泛化。MetaDelta的每个meta-learner都由一个经过批量训练的预训练编码器和用于预测的无参数解码器组成。

    05
    领券