,好玩的索引提取大数据集的子集(玩转Pandas,让数据处理更easy系列2 ) 自动数据对齐,完全可以不考虑行、列标签,直接append list....df_data.groupby('A') 默认是按照axis=0分组的(行),如果按照列,修改轴,即 df_data.groupby('A' , axis=1) 也可以按照多个列分组,比如: df_data.groupby...([ 'A', 'B'] ) 05 选择分组 分组后返回的对象类型为:DataFrameGroupBy,我们看下按照列标签'A'分组后,因为'A'的可能取值为:foo, bar ,所以分为了两组,通过DataFrameGroupBy...同样的方法,看下bar组包括的行: agroup = df.groupby('A') agroup.get_group('bar') ?...06 治:分组上的操作 对分组上的操作,最直接的是使用aggregate操作,如下,求出每个分组上对应列的总和,大家可以根据上面的分组情况,对应验证: agroup = df.groupby('A')
描述性统计和数据汇总 理解大型数据集的一种方法是计算整个数据集或有意义子集的描述性统计数据,如总和或均值。...本节首先介绍pandas的工作原理,然后介绍将数据聚合到子集的两种方法:groupby方法和pivot_table函数。...描述性统计 描述性统计(descriptivestatistics)允许使用定量度量来汇总数据集。例如,数据点的数量是一个简单的描述性统计,而平均值,如均值、中位数或众数是其他流行的例子。...默认情况下,它们返回沿轴axis=0的系列,这意味着可以获得列的统计信息: 如果需要每行的统计信息,使用axis参数: 默认情况下,缺失值不包括在描述性统计信息(如sum或mean)中,这与Excel...例如,下面是如何获得每组最大值和最小值之间的差值: df.groupby(["continent"]).agg(lambdax: x.max() - x.min()) 在Excel中获取每个组的统计信息的常用方法是使用透视表
在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...header=True 表示文件的第一行是列名,inferSchema=True 表示自动推断数据类型。...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。
在上面的示例中,我们使用默认参数在大约 5 秒内读取了 76 GB 的 CSV 文件,其中包含近 2 亿行和 23 列。② 然后我们通过 vaex 计算了tip_amount列的平均值,耗时 6 秒。...② 指定输出列的名称,然后显式实现vaex聚合统计方法。下面我们看下如何实际操作。本文后续部分,我们将使用 NYC Taxi 数据集的一个子集,包含10亿+条数据记录。...5.结果缓存因为效率高,Vaex经常会用作仪表板和数据应用程序的后端,尤其是那些需要处理大量数据的应用程序。使用数据应用程序时,通常会在相同或相似的数据子集上重复执行某些操作。...我们使用先前的数据(数据集包含超过 10 亿行),尝试计算纽约出租车数据集中所有出租车行程的平均弧距:print(f'Number of rows: {df.shape[0]:,}')def arc_distance...GPU 可以获得相当不错的性能提升。
您可以使用以下代码行来设置输出显示中的列数: pd.set_option('display.max_columns', 500) 500表示列的最大宽度。...']) 以下是成功导入后的数据预览。...要选择多个列,可以使用df[['Group', 'Contour', 'Depth']]。 子集选择/索引:如果要选择特定的子集,我们可以使用.loc或.iloc方法。...基本使用方法如下: df.loc[:,['Contour']]:选择'Contour'列的所有数据。 其中单冒号:选择所有行。 在逗号的左侧,您可以指定所需的行,并在逗号的右侧指定列。...下面的示例按“Contour”列对数据进行分组,并计算“Ca”列中记录的平均值,总和或计数。
2.输出planes的engines的频数 3.对数据框进行取子集,查看所有engines>=3的行 4.对数据框进行取子集,以查看 engines>= 3 且seats的所有行 # Get...3.计算每个季节的出发和到达延误的平均值,并重置索引。 4.计算每个始发地的出发、到达和总延误的平均值和标准差。...数据框的列名居然可以有两行啊。...如果单独查看列名的话: 7.拼图 1.创建一个两行一列的figure 2.使用seaborn,以flights数据的orgigin和dep_delay列作为横纵坐标画箱线图 3.使用seaborn,以tedel_car...增强模型的表现: 将分类特征转换为虚拟变量后,可以提高某些机器学习模型的预测准确性,因为模型可以捕捉到类别间的差异。 flights_sub是flights数据的子集。
值并集的行的dataframe pd.merge(left_frame, right_frame, on='key', how='left')#产生以left_frame的key所有值为行的dataframe...,重新给新的DataFrame设置从0开始的index pd.concat([df1,df2], ignore_index=True) append 使用场景:表头一致的多张表,进行连接(上下连接...) df1.append(df2).append(df3) combin_first 数据填补 使用场景:有两张表left和right,一般要求它们的表格结构一致,数据量也一致,使用right的数据去填补...计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。...默认情况下,所有数值列都会被聚合,虽然有时可能会被过滤为一个子集。
,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[:,where...] 通过整数位置,从DataFrame选取单个列或列子集 7 df.iloc[where_i,where_j] 通过整数位置,同时选取行和列 8 df.at[1abel_i,1abel_j] 通过行和列标签...通过行和列标签选取单一值 举例:使用iloc按位置区域提取数据 df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。...,用统计学指标快速描述数据的概要 6 .sum() 计算各列数据的和 7 .count() 非NaN值的数量 8 .mean( ) 计算数据的算术平均值 9 .median() 计算算术中位数 10 ....3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。
df按行加载部分数据:先打印前5行数据 观察第一列 print(df.head()) 最左边一列是行号,也就是DataFrame的行索引 Pandas默认使用行号作为行索引。...传入的是索引的序号,loc是索引的标签 使用iloc时可以传入-1来获取最后一行数据,使用loc的时候不行 loc和iloc属性既可以用于获取列数据,也可以用于获取行数据 df.loc[[行],[列]...[:,[0,2,4,-1]] df.iloc[:,0:6:2] # 所有行, 第0 , 第2 第4列 可以通过行和列获取某几个格的元素 分组和聚合运算 先将数据分组 对每组的数据再去进行统计计算如...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...pop','gdpPercap']].mean() # 根据year分组,查看每年的life平均值,pop平均值和gpd平均值,用mean做聚合运算 也可以根据两个列分组,形成二维数据聚合 df.groupby
,选取单列或列子集 4 df.1oc[val1,val2] 通过标签,同时选取行和列 5 df.iloc[where] 通过整数位置,从DataFrame选取单个行或行子集 6 df.iloc[where_i...9 reindex 通过标签选取行或列 10 get_value 通过行和列标签选取单一值 11 set_value 通过行和列标签选取单一值 举例:使用iloc按位置区域提取数据 df_inner.iloc...() 针对各列的多个统计汇总,用统计学指标快速描述数据的概要 6 .sum() 计算各列数据的和 7 .count() 非NaN值的数量 8 .mean( ) 计算数据的算术平均值 9 .median(...3 .drop_duplicates() 删除重复行,返回删除后的DataFrame对象。...举例:删除后出现的重复值: df['city'].drop_duplicates() 结语 文章中总结的是都是一些Pandas常用的方法,至于一些基础的概念还需要你学到Pandas的时候去理解,例如Series
使用Pandas进行时间重采样 考虑将重采样为 groupby() ,在此我们可以基于任何列进行分组,然后应用聚合函数来检查结果。...请注意,在这里我添加 [30:] 只是因为前30个条目(即第一个窗口)没有值来计算 max 函数,所以它们是 NaN,并且为了添加屏幕快照,以显示前20个值,我只是跳过了前30行,但实际上您不需要这样做...只需 在DataFrame上调用.plot函数即可获得基本线图 。 ? ? 在这里,我们可以看到随时间变化的制造品装运的价值。请注意,熊猫对我们的x轴(时间序列索引)的处理效果很好。...我们可以 在使用规则“ AS”重新采样后通过调用.plot来完成此操作, 因为“ AS”是年初的规则。 ? ? 我们还可以通过 在.plot顶部调用.bar来绘制每年开始的平均值 的 条形图。 ?...看看我如何在xlim中添加日期。主要模式是 xlim = ['开始日期','结束日期']。 ? 在这里,您可以看到从1999年到2014年年初的最大值输出。 学习成果 这使我们到了本文的结尾。
今天,我们将探讨如何在 Python 的 Pandas 库中创建 GroupBy 对象以及该对象的工作原理。...,例如组大小、平均值、中位数或总和,还可以包括从每个组中过滤掉特定的行 Aggregation 要聚合 GroupBy 对象的数据(即按组计算汇总统计量),我们可以在对象上使用 agg() 方法: #...DataFrame,其形状和索引与原始 DataFrame 相同,但具有转换后的各个值。...过滤方法根据预定义的条件从每个组中丢弃组或特定行,并返回原始数据的子集。...如何一次将多个函数应用于 GroupBy 对象的一列或多列 如何将不同的聚合函数应用于 GroupBy 对象的不同列 如何以及为什么要转换原始 DataFrame 中的值 如何过滤 GroupBy 对象的组或每个组的特定行
> 这是由于变量grouped是一个GroupBy对象,它实际上还没有进行任何计算,只是含有一些有关分组键df[‘key1’]的中间数据而已,然后我们可以调用配合函数(如:.mean()方法)来计算分组平均值等...(2)groupby(),根据分组键的不同,有以下4种聚合方法: 分组键为Series (a)使用原df的子列作为Series df.groupby([ df[‘key1’], df[‘key2’]...GroupBy的size方法,将返回一个含有分组大小的Series .apply() .agg() (4)对聚合后的数据片段,进行字典、列表等格式转化 将数据片段转为字典 pieces=pieces...(6)可使用一个/组列名,或者一个/组字符串数组对由DataFrame产生的GroupBy对象,进行索引,从而实现选取部分列进行聚合的目的即: (1)根据key1键对data1列数据聚合 df.groupby...)).count() # 按照【生日】的【年份】分组 参考链接:python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算!
上面两个表有两列重复的列,如果只根据一列进行合并,则会多出一列重复列,重复列名的处理我们一般使用merge的suffixes属性,可以帮我们指定重复列合并后的列名: pd.merge(left,right...我们使用unstack()将数据的列旋转为行,默认是最里层的行索引: result.unstack() ?...4、数据聚合 4.1 数据分组 pandas中的数据分组使用groupby方法,返回的是一个GroupBy对象,对分组之后的数据,我们可以使用一些聚合函数进行聚合,比如求平均值mean: df = pd.DataFrame...,虽然有时可能会被过滤为一个子集。...apply函数 同agg一样,transform也是有严格条件的函数,传入的函数只能产生两种结果:要么产生一个可以广播的标量值,如np.mean,要么产生一个相同大小的结果数组.最一般化的GroupBy
图3 实际上,我们可以使用groupby对象的.agg()方法将上述两行代码组合成一行,只需将字典传递到agg()。字典键是我们要处理的数据列,字典值(可以是单个值或列表)是我们要执行的操作。...,也允许使用正则元组,因此我们可以进一步简化上述内容: 图7 按多列分组 记住,我们的目标是希望从我们的支出数据中获得一些见解,并尝试改善个人财务状况。...在元组中,第一个元素是类别名称,第二个元素是属于特定类别的子集数据。因此,这是拆分步骤。 我们也可以使用内置属性或方法访问拆分的数据集,而不是对其进行迭代。...例如,属性groups为我们提供了一个字典,其中包含属于给定组的行的组名(字典键)和索引位置。 图12 要获得特定的组,简单地使用get_group()。...图14 可能还注意到,我们可以使用.loc方法获得与上面的groupby方法完全相同的结果。然而,.loc方法一次只执行一个操作,而groupby方法自动对每个组应用相同的操作。
:“遇到困难时,是否可以随时获得亲戚或朋友的帮助?”...它可以创建多个按变量分组的图表。例如,行可以是一个变量(人均GDP的类别),列是另一个变量(大洲)。 它确实还需要适应客户需求(即使用matplotlib),但是它仍然是令人信服。...网格的列代表大洲,网格的行代表不同水平的人均GDP。...Facet热图,外层的行显示在一年内,外层的列显示人均GDP,内层的行显示政治清廉,内层的列显示大洲。我们看到幸福指数朝着右上方向增加(即,高人均GDP和高政治清廉)。...结束语 本文展示了如何成为一名真正的Python可视化专家、如何在快速探索时更有效率、以及如何在董事会会议前创建更漂亮的图表、还有如何创建交互式绘图图表,尤其是在绘制地理空间数据时,十分有用。
groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。...由于行是根据上个月的销售值排序的,所以我们将获得上个月销售额排名第五的行。 13、第n个值,倒排序 也可以用负的第n项。例如," nth(-2) "返回从末尾开始的第二行。...例如,我们可以计算每家店上周销售额与上个月四分之一销售额的差值的平均值,如下: sales.groupby("store").apply( lambda x: (x.last_week_sales...例如,我们可以获得属于存储“Daisy”和产品组“PG1”的行如下: aisy_pg1 = sales.groupby( ["store", "product_group"]).get_group(...df["cum_mean"] = df.groupby( "category" )["value"].expanding().mean().values 25、展开后的最大值 可以使用expand
这些数据集可在公共领域获得,并在归属于 zillow.com 后可免费使用。 我们将使用有关美国地区平均房价的最新数据。 它是 CSV 数据集,或带有 CSV 的文本文件。...我们逐步介绍了如何过滤 Pandas 数据帧的行,如何对此类数据帧应用多个过滤器以及如何在 Pandas 中使用axis参数。...groupby方法按状态汇总数据,并获得每个State的平均值Price。...我们还看到了如何代替删除,也可以用0或剩余值的平均值来填写缺失的记录。 在下一节中,我们将学习如何在 Pandas 数据帧中进行数据集索引。...在本节中,我们探讨了如何设置索引并将其用于 Pandas 中的数据分析。 我们还学习了在读取数据后如何在数据帧上设置索引。 我们还看到了如何在从 CSV 文件读取数据时设置索引。
大家好,我是俊欣~ groupby是Pandas在数据分析中最常用的函数之一。它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。...由于行是根据上个月的销售值排序的,所以我们将获得上个月销售额排名第五的行。 13、第n个值,倒排序 也可以用负的第n项。例如,nth(-2)返回从末尾开始的第二行。...例如,我们可以计算每家店上周销售额与上个月四分之一销售额的差值的平均值,如下: sales.groupby("store").apply( lambda x: (x.last_week_sales -...例如,我们可以获得属于存储“Daisy”和产品组“PG1”的行如下: daisy_pg1 = sales.groupby(["store", "product_group"]).get_group(("...df["cum_mean"] = df.groupby( "category" )["value"].expanding().mean().values output 25、展开后的最大值 可以使用
它用于根据给定列中的不同值对数据点(即行)进行分组,分组后的数据可以计算生成组的聚合值。 如果我们有一个包含汽车品牌和价格信息的数据集,那么可以使用groupby功能来计算每个品牌的平均价格。...由于行是根据上个月的销售值排序的,所以我们将获得上个月销售额排名第五的行。 13、第n个值,倒排序 也可以用负的第n项。例如," nth(-2) "返回从末尾开始的第二行。...例如,我们可以计算每家店上周销售额与上个月四分之一销售额的差值的平均值,如下: sales.groupby("store").apply( lambda x: (x.last_week_sales -...例如,我们可以获得属于存储“Daisy”和产品组“PG1”的行如下: aisy_pg1 = sales.groupby( ["store", "product_group"]).get_group((...df["cum_mean"] = df.groupby( "category" )["value"].expanding().mean().values 25、展开后的最大值 可以使用expand
领取专属 10元无门槛券
手把手带您无忧上云