其中生成 Hfile 这一步可以选择 MapReduce 或 Spark。 本文采用第 3 种方式,Spark + Bulk Load 写入 HBase。...以查询 check_id=A208849559 为例,根据 RowKey 的设计原则,对其进行 salt+hash 计算,得前缀。...做这样转换是因为 HBase 的基本原理是基于 RowKey 排序的,并且当采用 bulk load 方式将数据写入多个预分区(region)时,要求 Spark 各 partition 的数据是有序的...踩坑记录1、kerberos 认证问题 如果集群开启了安全认证,那么在进行 Spark 提交作业以及访问 HBase 时,均需要进行 kerberos 认证。...定位到 HbaseKerberos.java:18,代码如下: 这是因为 executor 在进行 HBase 连接时,需要重新认证,通过 --keytab 上传的 tina.keytab 并未被 HBase
为了避免在数据写入时造成热点问题(即大量写操作集中在某一Region),预分区策略能够在表创建时提前分配多个Region,从而将写操作均匀分散到不同的Region中,大大提升性能。...本文将深入探讨如何在HBase中使用预分区策略提升写性能,并通过实例分析和代码展示详细的实现过程。...选择适当的行键设计行键的设计对预分区的效果至关重要。一般来说,HBase的行键是按照字典顺序排序的,如果行键设计不当(如递增或固定前缀),会导致数据集中写入某些特定的Region,依然会造成热点问题。...创建带预分区的表HBase提供了多种方式在创建表时预先分区,最常见的方式是基于行键范围或自定义分区键进行预分区。...使用盐值行键为了避免行键排序导致的热点问题,可以通过引入盐值(salt)来打乱行键的顺序,从而均匀分布数据。
重新分区(Repartitioning)通过重新分区可以将数据均匀分布到各个分区中。可以使用 repartition 或 coalesce 方法来调整分区数量。...局部聚合(Local Aggregation)在进行全局聚合之前,先进行局部聚合,可以减少数据传输量。...采样(Sampling)对数据进行采样,找出热点 key,然后对这些 key 进行特殊处理。...调整 Shuffle 分区数增加 Shuffle 操作的分区数,可以更好地分散数据。spark.conf.set("spark.sql.shuffle.partitions", 200)7....预聚合(Pre-Aggregation)在数据倾斜发生之前,先进行预聚合,减少后续操作的数据量。
使用COW存储类型时,任何写入Hudi数据集的新数据都将写入新的parquet文件。更新现有的行将导致重写整个parquet文件(这些parquet文件包含要更新的受影响的行)。...读时合并(Merge On Read):此存储类型使客户端可以快速将数据摄取为基于行(如avro)的数据格式。...使用MOR存储类型时,任何写入Hudi数据集的新数据都将写入新的日志/增量文件,这些文件在内部将数据以avro进行编码。...如何对存储在Hudi中的数据建模 在将数据写入Hudi时,可以像在键-值存储上那样对记录进行建模:指定键字段(对于单个分区/整个数据集是唯一的),分区字段(表示要放置键的分区)和preCombine/combine...当查询/读取数据时,Hudi只是将自己显示为一个类似于json的层次表,每个人都习惯于使用Hive/Spark/Presto 来对Parquet/Json/Avro进行查询。 8.
=4,GLOBLA INDEX SALT_BUCKETS=4, 下图为测试结果。...案例二就是物联网,它的特点就是数据量大,写多读少,它的数据来自多个传感器,它每天的写入数据都是5亿+的数据量。...我们在了解Spark on HBase的框架后,接下来深入了解如何在Spark SQL层面上来支持访问HBase。到目前为止比较好的做法就是为Spark SQL添加HBase Source。...下面将介绍一下相关的优化:分区裁剪、谓词下推、列裁剪。分区裁剪:只去访问需要扫描数据的region,且扫描最少的数据。列裁剪:只去Scan需要的列出来。...Spark SQL的Datasource,然后做列裁剪、分区裁剪、谓词下推这些优化来提高性能。
在我们开始处理真实数据之前,了解Spark如何在集群中移动我们的数据,以及这与性能之间的关系是很有用的。Spark无法同时在内存中保存整个数据集,因此必须将数据写入驱动器或通过网络传递。...由于下一阶段的处理必须在对所有三个分区进行评估之后才能开始,因此该阶段的总体结果将被延迟。 ? 调度 在分割为多个分区时可能出现的另一个问题是,有太多的分区无法正确地覆盖可用执行程序的数量。...一个常见的建议是每个CPU有4个分区,但是与Spark性能相关的设置非常依赖于具体情况,因此这个值应该与给定的场景进行微调。 洗牌 当在分区之间重新排列数据时,就会发生洗牌。...当转换需要来自其他分区的信息时,比如将列中的所有值相加,就需要这样做。Spark将从每个分区收集所需的数据,并将其合并到一个新的分区中,可能是在不同的执行程序上。 ?...在新的解决方案中,Spark仍然将CSVs加载到69个分区中,但是它可以跳过shuffle阶段,认识到它可以基于密钥分割现有的分区,然后直接将数据写入到parquet文件中。
需要改变各种数据的用例包括随时间变化的时序数据、延迟到达的时延数据、平衡实时可用性和回填、状态变化的数据(如CDC)、数据快照、数据清理等,在生成报告时,这些都将被写入/更新在同一组表。...3.表类型 Hudi支持的表类型如下: 写入时复制:使用专有的列文件格式(如parquet)存储数据。在写入时执行同步合并,只需更新版本并重写文件。...读取时合并:使用列(如parquet) +行(如Avro)文件格式的组合存储数据。更新记录到增量文件,并随后压缩以同步或异步生成列文件的新版本。...对数据(查询、IUD【插入更新删除】、索引、数据映射、流式处理)的每个操作均符合ACID标准。支持使用基于列和行的格式进行近实时分析,以平衡分析性能和流式采集以及自动切换。...分布式索引服务器可以与查询引擎(如spark, presto)一起启动,以避免跨运行重新加载索引,并实现更快和可扩展的查找。 Delta【开源】 ?
存储类型和视图 Hudi存储类型定义了如何在DFS上对数据进行索引和布局以及如何在这种组织之上实现上述原语和时间轴活动(即如何写入数据)。...如您所见,旧查询不会看到以粉红色标记的当前进行中的提交的文件,但是在该提交后的新查询会获取新数据。因此,查询不受任何写入失败/部分写入的影响,仅运行在已提交数据上。...使用MOR存储类型时,任何写入Hudi数据集的新数据都将写入新的日志/增量文件,这些文件在内部将数据以avro进行编码。...如何对存储在Hudi中的数据建模 在将数据写入Hudi时,可以像在键-值存储上那样对记录进行建模:指定键字段(对于单个分区/整个数据集是唯一的),分区字段(表示要放置键的分区)和preCombine/combine...如何使用DeltaStreamer或Spark DataSource API写入未分区的Hudi数据集 Hudi支持写入未分区数据集。
与 Cassandra 和 Spark 等其他大数据技术类似,Hive 是一个非常强大的解决方案,但需要数据开发人员和运营团队进行调优,才能在对 Hive 数据执行查询时获得最佳性能。...在摄入的过程中,这些数据将以这些格式写入。如果你的应用程序是写入普通的 Hadoop 文件系统,那么建议提供这种格式。大多数摄入框架(如 Spark 或 Nifi)都有指定格式的方法。...合并技术也不涉及任何在线的地方,因此,这项特定的技术非常重要,特别是批处理应用程序读取数据时。 什么是合并作业?...使用 Spark 或 Nifi 向日分区目录下的 Hive 表写入数据 使用 Spark 或 Nifi 向 Hadoop 文件系统(HDFS)写入数据 在这种情况下,大文件会被写入到日文件夹下。...在这种情况下,从日分区中选择数据并将其写入临时分区。如果成功,则使用 load 命令将临时分区数据移动到实际的分区。步骤如图 3 所示。
当一个RDD的某个分区丢失的时候,RDD记录有足够的信息记录其如何通过其他的RDD进行计算,且只需重新计算该分区。因此,丢失的数据可以被很快的恢复,而不需要昂贵的复制代价。...RDD的第一个优点是可以使用lineage恢复数据,不需要检查点的开销,此外,当出现失败时,RDDs的分区中只有丢失的那部分需要重新计算,而且该计算可在多个节点上并发完成,不必回滚整个程序 RDD的第二个优点是...Spark的调度器会额外考虑被持久化(persist)的RDD的那个分区保存在内存中并可供使用,当用户对一个RDD执行Action(如count 或save)操作时,调度器会根据该RDD的lineage...第三种策略适用于RDD太大难以存储在内存的情形,但每次重新计算该RDD会带来额外的资源开销。 对于有限可用内存,我们使用以RDD为对象的LRU(最近最少使用)回收算法来进行管理。...当计算得到一个新的RDD分区,但却没有足够空间来存储它时,系统会从最近最少使用的RDD中回收其一个分区的空间。
本文主要基于Spark进行了一些扩展,支持对数据进行一些定制化的Data Clustering,以及使用Spark SQL测试Data Skipping的效果。...数据的组织指的是在向表中写入数据时如何组织数据的分布,存储方式等,使得后续的查询在访问数据时尽量高效,从而加速数据分析的效率。...比如在Spark SQL中,ORDER BY可以保证全局有序,而SORT BY只保证Partition内部有序,即在写入数据时,加上ORDER BY可以保证文件之间及文件内部数据均是有序的,而SORT...通过Boundary-based Interleaved Index,我们基于Spark实现了一个Z-Order Ordering实现,并重用RangePartitioner对数据进行分区,写入的逻辑如下...通过Boundary-based Hibert Index,我们基于Spark实现了一个Hibert Curve Ordering实现,并重用RangePartitioner对数据进行分区,写入的逻辑如下
此外,Hive的分区策略需要在创建表时进行设置,如果数据分布出现变化,需要重新设置分区策略。...在处理包含一年数据的大型数据集(比如1TB以上)时,可能会将数据分成几千个Spark分区来进行处理。...使用动态分区写入Hive表时,每个Spark分区都由执行程序来并行处理。 处理Spark分区数据时,每次执行程序在给定的Spark分区中遇到新的分区时,它都会打开一个新文件。...按列重新分区使用HashPartitioner,将具有相同值的数据,分发给同一个分区,实际上,它将执行以下操作: 但是,这种方法只有在每个分区键都可以安全的写入到一个文件时才有效。...这是因为无论有多少特定的Hash值,它们最终都会在同一个分区中。按列重新分区仅在你写入一个或者多个小的Hive分区时才有效。
当一个RDD的某个分区丢失时,RDD有足够的信息记录其如何通过其他RDD进行计算,且只需重新计算该分区,这是Spark的一个创新。...但如果是宽依赖,则当容错重算分区时,因为父分区数据只有一部分是需要重算子分区的,其余数据重算就造成了冗余计算。 所以,不同的应用有时候也需要在适当的时机设置数据检查点。...为了解决这些问题,Spark也提供了预写日志(也称作journal),先将数据写入支持容错的文件系统中,然后才对数据施加这个操作。...Driver异常退出时,一般要使用检查点重启Driver,重新构造上下文并重启接收器。第一步,恢复检查点记录的元数据块。第二步,未完成作业的重新形成。...由于失败而没有处理完成的RDD,将使用恢复的元数据重新生成RDD,然后运行后续的Job重新计算后恢复。
,供下游体验使用; B、广告日志数据量大,实时写入数据湖的方案难度和风险比较大,实时写入的性能和稳定性都是未知的,如何保证数据不重不漏,如何在任务重启(任务异常,发布重启)时保证数据不重不漏,如何变更...原有的 Spark 小时入湖任务仍然保留,用于数据重跑,数据修复,历史数据回刷等场景,完整的一次性覆盖写入一个小时分区的数据。...2.3 湖仓一体方案的优势 原子性保证 之前采用Spark批量写入数据,如果需要修改数据(如补录数据)原子性是无法保证的,也就是说如果有多个Job同时Overwrite一个分区,我们是无法保证最终结果的正确性...Partition Evolution:在数仓或者数据湖中一个加速数据查询很重要的手段就是对数据进行分区,这样查询时可以过滤掉很多的不必要文件。...湖仓一体方案遇到的挑战和改进 日志数据从各个终端写入消息队列,然后通过Spark批写入或者Flink流式(开发中)写入数据湖,入湖的数据可以通过Spark/Flink/Presto进行查询分析。
有一种典型的应用场景,比如待处理分区中的数据需要写入到数据库,如果使用map函数,每一个元素都会创建一个数据库连接对象,非常耗时并且容易引起问题发生,如果使用mapPartitions函数只会在分区中创建一个数据库连接对象...在较大的数据集中使用filer等过滤操作后可能会产生多个大小不等的中间结果数据文件,重新分区并减小分区可以提高作业的执行效率,是Spark中常用的一种优化手段 repartition (numPartitions...(partitioner):接收一个分区对象(如Spark提供的分区类HashPartitioner)对RDD中元素重新分区并在分区内排序 常用的Action操作及其描述: reduce(func)...如果子RDD部分分区甚至全部分区数据损坏或丢失,需要从所有父RDD重新计算,相对窄依赖而言付出的代价更高,所以应尽量避免宽依赖的使用。 ?...当Reduce Task读取数据时,先读取索引文件找到对应的分区数据偏移量和范围,然后从数据文件读取指定的数据。
重用意味着将计算和数据存储在内存中,并在不同的算子中多次重复使用。通常,在处理数据时,我们需要多次使用相同的数据集。例如,许多机器学习算法(如K-Means)在生成模型之前会对数据进行多次迭代。...这就是为什么Hadoop MapReduce与Spark相比速度慢的原因,因为每个MapReduce迭代都会在磁盘上读取或写入数据。...如果没有足够的内存存储 RDD,则某些分区将不会被缓存,每次需要时都会重新计算。这是默认级别。如果你知道数据大小可以装载进内存中,可以使用此选项,否则会重新计算某些分区,会显着降低整体作业的性能。...如果数据在内存中放不下,则溢写到磁盘上。需要时则会从磁盘上读取,但与重新计算不能放进内存的分区相比,花费的时间会少得多。...虽然Spark具有弹性并可以通过重新计算丢失的分区从故障中恢复,但是有时重新执行非常长的转换序列代价非常昂贵,如果我们在某个时刻点对RDD进行 Checkpoint 并使用该 Checkpoint 作为起点来重新计算丢失的分区
因此,当需要对RDD中的元素执行操作时,可以使用foreach;当需要对整个分区执行操作时,可以使用foreachPartition。...例如,可以使用它将记录插入数据库或将数据写入分布式文件系统(如Hadoop HDFS)。...需要注意的是,Spark中的foreach操作是终端操作,意味着它会触发前面的转换操作的执行。此外,在使用foreach将数据写入外部系统等操作时,确保容错性并适当处理任何可能的失败或重试非常重要。...宽依赖需要进行数据洗牌,但Spark可以通过重新执行丢失的分区来实现容错,提高了容错能力。 总结: Spark的宽依赖和窄依赖是描述RDD之间依赖关系的概念。...在处理数据倾斜的情况下,可以考虑使用其他解决方案,如使用自定义分区器或调整数据分布等方法来缓解数据倾斜问题。
当我们使用Spark加载数据源并进行一些列转换时,Spark会将数据拆分为多个分区Partition,并在分区上并行执行计算。...repartition除了可以指定具体的分区数之外,还可以指定具体的分区字段。我们可以使用下面的示例来探究如何使用特定的列对DataFrame进行重新分区。...] = [name: string, gender: string] 按列进行分区时,Spark默认会创建200个分区。...但是Spark却不会对其分区进行调整,由此会造成大量的分区没有数据,并且向HDFS读取和写入大量的空文件,效率会很低,这种情况就需要我们重新调整分数数量,以此来提升效率。...对于大型数据集,进行Shuffle操作是很消耗性能的,但是当我们的数据集比较小的时候,可以使用repartition方法进行重分区,这样可以尽量保证每个分区的数据分布比较均匀(使用coalesce可能会造成数据倾斜
还要学习在 SQL 的帮助下,如何对 Parquet 文件对数据进行分区和检索分区以提高性能。...Parquet 文件与数据一起维护模式,因此它用于处理结构化文件。 下面是关于如何在 PySpark 中写入和读取 Parquet 文件的简单说明,我将在后面的部分中详细解释。...首先,使用方法 spark.createDataFrame() 从数据列表创建一个 Pyspark DataFrame。...当将DataFrame写入parquet文件时,它会自动保留列名及其数据类型。Pyspark创建的每个分区文件都具有 .parquet 文件扩展名。...这与传统的数据库查询执行类似。在 PySpark 中,我们可以通过使用 PySpark partitionBy()方法对数据进行分区,以优化的方式改进查询执行。
领取专属 10元无门槛券
手把手带您无忧上云