在金融分析中,SMA(Simple Moving Average,简单移动平均)是一种常用的技术指标,用于平滑价格数据以识别趋势。在批量SMA乘法器上绘制买入和做空信号通常涉及以下几个步骤:
以下是一个简单的Python示例,展示如何在批量SMA乘法器上绘制买入和做空信号:
import pandas as pd
import matplotlib.pyplot as plt
# 示例数据
data = {
'Date': pd.date_range(start='1/1/2020', periods=100),
'Close': [i + 10 * (i % 10) for i in range(100)] # 示例收盘价
}
df = pd.DataFrame(data)
# 计算SMA
df['SMA_5'] = df['Close'].rolling(window=5).mean()
df['SMA_20'] = df['Close'].rolling(window=20).mean()
# 绘制图表
plt.figure(figsize=(14, 7))
plt.plot(df['Date'], df['Close'], label='Close Price')
plt.plot(df['Date'], df['SMA_5'], label='5-day SMA')
plt.plot(df['Date'], df['SMA_20'], label='20-day SMA')
# 标记买入和做空信号
buy_signals = df[df['SMA_5'] > df['SMA_20']]
sell_signals = df[df['SMA_5'] < df['SMA_20']]
plt.scatter(buy_signals['Date'], buy_signals['Close'], color='green', marker='^', label='Buy Signal')
plt.scatter(sell_signals['Date'], sell_signals['Close'], color='red', marker='v', label='Sell Signal')
plt.xlabel('Date')
plt.ylabel('Price')
plt.title('SMA Buy and Sell Signals')
plt.legend()
plt.show()
fillna()
方法填充或删除缺失值。fillna()
方法填充或删除缺失值。通过上述步骤和示例代码,你可以在批量SMA乘法器上绘制买入和做空信号,并根据需要进行调整和优化。
没有搜到相关的沙龙
领取专属 10元无门槛券
手把手带您无忧上云