首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像学习-HOG特征

沿着一张图片X和Y轴的方向上的梯度是很有用的,因为在边缘和角点的梯度值是很大的,我们知道边缘和角点包含了很多物体的形状信息。...左边:x轴的梯度绝对值 中间:y轴的梯度绝对值 右边:梯度幅值 从上面的图像中可以看到x轴方向的梯度主要凸显了垂直方向的线条,y轴方向的梯度凸显了水平方向的梯度,梯度幅值凸显了像素值有剧烈变化的地方。...(注意:图像的原点是图片的左上角,x轴是水平的,y轴是垂直的) 图像的梯度去掉了很多不必要的信息(比如不变的背景色),加重了轮廓。换句话说,你可以从梯度的图像中还是可以轻而易举的发现有个人。...我们用了上一张图里面的那个网格的梯度幅值和方向。根据方向选择用哪个bin, 根据副值来确定这个bin的大小。...8*8网格直方图 这里,在我们的表示中,Y轴是0度(从上往下)。你可以看到有很多值分布在0,180的bin里面,这其实也就是说明这个网格中的梯度方向很多都是要么朝上,要么朝下。

1.6K60

教你理解图像学习中的方向梯度直方图(Histogram Of Gradient)

沿着一张图片X和Y轴的方向上的梯度是很有用的,因为在边缘和角点的梯度值是很大的,我们知道边缘和角点包含了很多物体的形状信息。...左边:x轴的梯度绝对值 中间:y轴的梯度绝对值 右边:梯度幅值 从上面的图像中可以看到x轴方向的梯度主要凸显了垂直方向的线条,y轴方向的梯度凸显了水平方向的梯度,梯度幅值凸显了像素值有剧烈变化的地方。...(注意:图像的原点是图片的左上角,x轴是水平的,y轴是垂直的) 图像的梯度去掉了很多不必要的信息(比如不变的背景色),加重了轮廓。换句话说,你可以从梯度的图像中轻而易举的发现有个人。...我们用了上一张图里面的那个网格的梯度幅值和方向。根据方向选择用哪个bin, 根据副值来确定这个bin的大小。...8*8网格直方图 这里,在我们的表示中,Y轴是0度(从上往下)。你可以看到有很多值分布在0,180的bin里面,这其实也就是说明这个网格中的梯度方向很多都是要么朝上,要么朝下。

2.7K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python可视化库Matplotlib绘图入门详解

    可以看出,有两个点在图像的边缘,因此,我们需要改变轴的显示范围。...3 显示范围 与 MATLAB 类似,这里可以使用 axis 函数指定坐标轴显示的范围: plt.axis([xmin, xmax, ymin, ymax]) ?...)饼图外侧显示的说明文字 explode (每一块)离开中心距离 startangle 起始绘制角度,默认图是从x轴正方向逆时针画起,如设定=90则从y轴正方向画起 shadow表示是否阴影 labeldistance...label绘制位置,相对于半径的比例, 如<1则绘制在饼图内侧 autopct 控制饼图内百分比设置,可以使用format字符串或者format function '%1.1f'指小数点前后位数(没有用空格补齐...’ 返回值 : n: 直方图向量,是否归一化由参数normed设定 bins: 返回各个bin的区间范围 patches: 返回每个bin里面包含的数据,是一个list ?

    2.7K21

    opencv里面直方图的意义

    什么是直方图 直方图是一种图表类型,在计算机视觉领域通常用来指反映图片的亮度,色彩,强度在整个图片里面的分布情况。直方图我们可以理解成另一种理解图片的方式。...直方图可以是彩色的图片,也可以是灰度图,直方图的X轴的范围是(0-255),Y轴则是不同像素值上,像素的数量,如果是彩色的图片Y轴则会有R,G,B三种像素展示,如果是灰度值则只有一种像素展示。...这里面的16个单独的区间都可以叫做一个BIN(英文箱子的意思) DIMS: 维度,它代表收集颜色通道的个数,如果是灰度图这个值就是1,如果一个彩色图那么DIMS就是3 RANGE: 代表你想测量亮度的范围...,正常下是[0-255]代表所有的像素值 使用方法 直方图可以通过opencv的内置的函数来展示,也可以通过numpy的函数来展示,这里推荐使用numpy来打印直方图,opencv内置的方法代码比较长,...直方图的意义 在计算机视觉领域,常常要处理各种各样的图片,通过观察图片的直方图,可以使我们在加工图片时更加合理的调整一些函数的参数,比如边缘检测,高斯模糊,切割,透视,二值化等等。

    74560

    opencv里面直方图的意义

    什么是直方图 直方图是一种图表类型,在计算机视觉领域通常用来指反映图片的亮度,色彩,强度在整个图片里面的分布情况。直方图我们可以理解成另一种理解图片的方式。...直方图可以是彩色的图片,也可以是灰度图,直方图的X轴的范围是(0-255),Y轴则是不同像素值上,像素的数量,如果是彩色的图片Y轴则会有R,G,B三种像素展示,如果是灰度值则只有一种像素展示。...这里面的16个单独的区间都可以叫做一个BIN(英文箱子的意思) DIMS: 维度,它代表收集颜色通道的个数,如果是灰度图这个值就是1,如果一个彩色图那么DIMS就是3 RANGE: 代表你想测量亮度的范围...,正常下是[0-255]代表所有的像素值 使用方法 直方图可以通过opencv的内置的函数来展示,也可以通过numpy的函数来展示,这里推荐使用numpy来打印直方图,opencv内置的方法代码比较长,...33.png (3)彩色直方图 11.png 直方图的意义 在计算机视觉领域,常常要处理各种各样的图片,通过观察图片的直方图,可以使我们在加工图片时更加合理的调整一些函数的参数,比如边缘检测,

    1.6K60

    单变量图的类型与直方图绘图基础

    Q-Q 图检验数据分布的关键是通过绘制分位数来进行概率分布比较。首先选好区间长度,Q-Q 图上的点 (x, y) 对应第一个分布(X 轴)的分位数和第二个分布(Y 轴)相同的分位数。...在一般的学术研究中,使用直方图或密度图观察数据分布的频次要远高于 Q-Q 图。...当参数 bins 的值为整数时,定义范围内等宽 bin 的数量。当参数 bins 的值为自定义数值序列时,定义 bin 边缘数值,包括第一个 bin 的左边缘和最后一个 bin 的右边缘。...,我们需要在直方图中添加正态分布曲线(normal distribution curve)、均值线(mean line)和中位数线(median line)等,或者以短竖线样式在 X 轴位置处表示数据点...由于概率密度函数结果是归一化的,即曲线下方的面积为 1,而直方图的总面积是样本数和每个 bin 宽度的乘积,因此,对概率密度函数结果与样本个数、bin 宽度值相乘的结果进行绘制,即可将绘制的曲线缩放到直方图的高度

    62030

    你知道怎么用Pandas绘制带交互的可视化图表吗?

    figsize : 图的宽度和高度 title : 设置标题 xlim / ylim:为 x 和 y 轴设置可见的绘图范围(也适用于日期时间 x 轴) xlabel / ylabel : 设置 x 和...y 标签 logx / logy : 在 x/y 轴上设置对数刻度 xticks / yticks : 设置轴上的刻度 color:为绘图定义颜色 colormap:可用于指定要绘制的多种颜色 hovertool...直方图 在绘制直方图时,有不少参数可供选择: bins:确定用于直方图的 bin,如果 bins 是 int,则它定义给定范围内的等宽 bin 数量(默认为 10),如果 bins 是一个序列,它定义了...bin 边缘,包括最右边的边缘,允许不均匀的 bin 宽度,如果 bins 是字符串,则它定义用于计算最佳 bin 宽度的方法,如histogram_bin_edges所定义 histogram_type...也可以传递一个整数,例如normed=100将导致带有百分比 y 轴的直方图(直方图值的总和 = 100),默认值:False cumulative:如果为 True,则显示累积直方图,默认值:False

    3.8K30

    累积分布函数和直方图哪个更好?

    只是为了说明,我们刚刚使用 MATLAB 随机数生成器生成了一些正态分布的数字: x=randn(100,1)*10+50 在直方图的帮助下显示这些数字,数字的结果范围被分成一定数量的均匀间隔 - 所谓的...如果 x 轴的限制没有根据异常值而改变,则异常值也可能完全被监督。直方图没有表明在显示的轴限制之外仍然存在数据。 在累积分布函数内,可以通过 CDF 曲线的尾部看到异常值。...如果不更改x轴的限制以容纳所有数据,由于分布函数并未在轴限制之前结束且未到达y=1线,因此异常值的存在仍然很明显. 无穷大值的显示 如果某些无穷大值是数据集的一部分,则在直方图中根本看不到它们的存在。...几个数据集的比较 CDF 比直方图更适合比较多个数据集。可以将任意数量的 CDF 绘制到相同的轴上,而不会出现任何比较问题。因此,每个集合实际包含多少数据无关紧要。...防止误解和操纵的安全性 直方图的另一个缺点是它对某些显示参数(如 bin 大小)的敏感性。

    17610

    NumPy 1.26 中文文档(四十二)

    如果是 array_like,则两个维度的 bin 边缘(x_edges=y_edges=bins)。 如果[int, int],每个维度的 bin 数量(nx, ny = bins)。...如果为[array, array],则两个维度中的 bin 边缘(x_edges, y_edges = bins)。...x中的值沿第一个维度进行直方图处理,而y中的值沿第二个维度进行直方图处理。 xedges ndarray,形状(nx+1,) 第一个维度的 bin 边缘。...请注意,直方图不遵循笛卡尔坐标系的惯例,其中x值在横轴上,y值在纵轴上。相反,x沿数组的第一个维度(垂直)进行直方图处理,y沿数组的第二个维度(水平)进行直方图处理。...首先定义 bin 的边缘: >>> xedges = [0, 1, 3, 5] >>> yedges = [0, 2, 3, 4, 6] 接下来我们创建一个具有随机 bin 内容的直方图 H: >>>

    23810

    SIFT特征点提取「建议收藏」

    SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点、边缘点、暗区的亮点及亮区的暗点等。...后来,后来、、、,不知哪位学者发现,可以使用分离的高斯卷积(即先用1xN的模板沿着X方向对图像卷积一次,然后用Nx1的模板沿着Y方向对图像再卷积一次,其中N=[(6σ+1)]且向上取最邻近奇数),这样既省时也减小了直接卷积对图像边缘信息的严重损失...,当它在任一维度上的偏移量大于0.5时(即x或y或 σ),意味着插值中心已经偏移到它的邻近点上,所以必须改变当前关键点的位置。...3.1.1、梯度直方图 在完成关键点的梯度计算后,使用直方图统计领域内像素的梯度和方向。梯度直方图将0~360度的方向范围分为36个柱(bins),其中每柱10度。...Opencv 所使用的平滑公式为: 其中i∈[0,35],h 和H 分别表示平滑前和平滑后的直方图。

    2K22

    详解seaborn可视化中的kdeplot、rugplot、distplot与jointplot

    ,反映在图像上的闭环层数 下面我们来看几个示例来熟悉kdeplot中上述参数的实际使用方法: 首先我们需要准备数据,本文使用seaborn中自带的鸢尾花数据作为示例数据,因为在jupyter notebook...height:设置每个观测点对应的小短条的高度,默认为0.05 axis:字符型变量,观测值对应小短条所在的轴,默认为'x',即x轴 使用默认参数进行绘制: ax = sns.rugplot(iris.petal_length...,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下: a:一维数组形式,传入待分析的单个变量 bins:int型变量,用于确定直方图中显示直方的数量...fit部分拟合出的曲线之外的所有对象的色彩 vertical:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒 norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度...ratio:int型,调节联合图与边缘图的相对比例,越大则边缘图越矮,默认为5 space:int型,用于控制联合图与边缘图的空白大小 xlim,ylim:设置x轴与y轴显示范围 joint_kws,

    5K32

    (数据科学学习手札62)详解seaborn中的kdeplot、rugplot、distplot与jointplot

    x-y轴位置   kernel:字符型输入,用于控制核密度估计的方法,默认为'gau',即高斯核,特别地在2维变量的情况下仅支持高斯核方法   legend:bool型变量,用于控制是否在图像上添加图例...,反映在图像上的闭环层数   下面我们来看几个示例来熟悉kdeplot中上述参数的实际使用方法:   首先我们需要准备数据,本文使用seaborn中自带的鸢尾花数据作为示例数据,因为在jupyter notebook...,其主要参数如下:   a:一维数组,传入观测值向量   height:设置每个观测点对应的小短条的高度,默认为0.05   axis:字符型变量,观测值对应小短条所在的轴,默认为'x',即x轴   使用默认参数进行绘制...:bool型,控制是否颠倒x-y轴,默认为False,即不颠倒   norm_hist:bool型变量,用于控制直方图高度代表的意义,为True直方图高度表示对应的密度,为False时代表的是对应的直方区间内记录值个数...,默认为5   space:int型,用于控制联合图与边缘图的空白大小   xlim,ylim:设置x轴与y轴显示范围   joint_kws,marginal_kws,annot_kws:传入参数字典来分别精细化控制每个组件

    3.2K50

    不使用直方图的6个原因以及应该使用哪个图替代

    直方图并非没有偏见。实际上,它们是武断的,可能会导致对数据的错误结论。 无论你是在与高管开会,还是在与数据狂人开会,有一件事是可以肯定的:总会看到一个直方图。...换句话说,CDP上的每个点显示: x轴:变量的原始值(正如直方图所示); y轴:有多少个是与观察值相同或少于观察值的数量。 让我们来看一个常见变量的例子:最大心率。 ?...我们取坐标为x = 140 y = 90(30%)的点。在横轴上,你可以看到变量的值:每分钟140次心跳。在纵轴上,你可以看到心率等于或低于140的观察计数(在本例中是90人,这意味着样本的30%)。...此外,如果你经常需要回答这样的问题:“有多少人在140和160之间?”或“180以上的有多少?”CDP将更有用。如果你仔细想想,CDP可以立即给一个答案。使用直方图是不可能的。...然后,你只需要画出这两列,注意把变量的值放在x轴上。

    1.3K10

    分布(一)利用python绘制直方图

    ax.hist(df["sepal_length"], edgecolor="black") plt.show() 直方图 定制多样化的直方图 自定义直方图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识...,单纯的将记录值在坐标轴上表现出来 ax_sub = sns.histplot(data=df, kde=True, x="sepal_length", ax=ax[1][0]) sns.rugplot...'scatter') plt.show() 5 引申-绘制边缘图 因为jointplot是一个需要全幅度的图形级别函数,故不能在 subplots 子图中使用。...同样的jointplot也有很多参数可以自定义,并且可以使用更为灵活的JointGrid。...和matplotlib的hist可以快速绘制直方图,并通过修改参数或者辅以其他绘图知识自定义各种各样的直方图来适应相关使用场景。

    43810

    【数据可视化包Matplotlib】Matplotlib基本绘图方法

    plt.plot()函数的参数及其解释如下: x:x轴数据序列,可以是列表、数组或者其他可迭代对象。如果未提供此参数,将使用默认的索引作为x轴数据。...height:柱状图的高度,即对应x位置上的数值,可以是一个数字序列。 width:柱状图的宽度,默认为0.8。 bottom:柱状图底部的位置,在堆叠柱状图中使用,表示下方柱状图的顶部位置。...align:控制柱状图的对齐方式,可选值包括’center’(居中,默认值)、‘edge’(以x为边缘对齐)。 color:柱状图的颜色,可以是单个颜色或颜色序列。...edgecolor:柱状图边缘的颜色。 linewidth:柱状图边缘的宽度。 tick_label:指定每个柱状图的标签,一般用于指定x轴刻度的标签。 xerr:用于绘制误差条的水平误差。...yerr:用于绘制误差条的垂直误差。 ecolor:误差条的颜色。 capsize:误差条顶端和底端的线条长度。 error_kw:控制误差条的属性,如线型、线宽等。 log:在y轴上使用对数刻度。

    11410

    matplotlib入门

    (如标题,图例,色彩,轴等),以及嵌套的子图; The whole figure....设置失效,即不能指定柱子之间的间隔,默认连接在一起; align:{‘left’, ‘mid’, ‘right’};‘left’:柱子的中心位于bins的左边缘;‘mid’:柱子位于bins左右边缘之间...;‘right’:柱子的中心位于bins的右边缘; orientation:{‘horizontal’, ‘vertical’}:如果取值为horizontal,则条形图将以y轴为基线,水平排列;简单理解为类似...即显示占比,默认为0,不归一化;不推荐使用,建议改用density参数; edgecolor: 直方图边框颜色; alpha: 透明度; 返回值(用参数接收返回值,便于设置数据标签): n:直方图向量...当normed取默认值时,n即为直方图各组内元素的数量(各组频数); bins: 返回各个bin的区间范围; patches:返回每个bin里面包含的数据,是一个list。

    4.3K20

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...离散箱是自动为分类变量设置的,但它可能也有助于“缩小”条,以强调轴的分类性质: sns.displot(tips, x="day", shrink=.8) 案例3-直方图histplot-Conditioning...与直方图或KDE不同,它直接表示每个数据点。这意味着不需要考虑bin大小或平滑参数。...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...This is built into displot(): 显示边际分布的一种不那么突兀的方法是使用“地毯”图,它在图的边缘添加一个小标记来表示每个单独的观察结果。

    31130

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    直方图是一种条形图,其中表示数据变量的轴被划分为一组离散的bins,并且每个bin内的观测值的计数使用相应的bar的高度表示: sns.displot(penguins, x="flipper_length_mm...离散箱是自动为分类变量设置的,但它可能也有助于“缩小”条,以强调轴的分类性质: sns.displot(tips, x="day", shrink=.8) 案例3-直方图histplot-Conditioning...与直方图或KDE不同,它直接表示每个数据点。这意味着不需要考虑bin大小或平滑参数。...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...This is built into displot(): 显示边际分布的一种不那么突兀的方法是使用“地毯”图,它在图的边缘添加一个小标记来表示每个单独的观察结果。

    32920

    3D特征点概述(2)

    法线是图像块的局部坐标系的Z轴,其中Pi位于(0,0)。 Y轴是世界坐标系Y轴。 X轴相应对齐。围绕Pi的半径r内的所有邻居都被转移到该局部坐标系中。 (3)具有n个光束的星形图案投射在图像块上。...另外,靠近中心的细胞有助于得分具有更高的重量(中间2个,边缘1个)。 (4)最后,计算补片的主导方向,使其对法线周围的旋转不变。...(4)使用这些值,可以通过两个点拟合具有近似半径rc的假想圆(见图)。请注意,当两个点位于平面上时,半径将变为无穷大。...增加D3直方图的相应直方图区间。 (6) A3:对于A3函数计算三点之间的角度。此功能再次分为IN,OUT和MIXED。这次使用与角度相反的线。增加相应的A3直方图bin。...(3)对于前一行,找到位于表面或外部的那条线的部分之间的比率。结果应该是0表示完全在外面,1表示完全在表面上,并且来自MIXED线的所有值都在它们之间分布。增加D2比率直方图的对应bin。

    1.6K50

    数据导入与预处理-拓展-pandas可视化

    散点图 4.1生成数据 4.2 绘制大小不一的散点图 4.3 设置渐变色/边缘/边缘宽度 4.4 绘制多组散点图 4.5 六边形箱型图 5....loc=4) # 指定图例的位置 plt.show() 输出为: 1.4 绘制折线图-双y轴 折线图–双y轴 A、C、D使用一个y轴,B使用一个y轴 # 折线图|双y轴 # A、C、D使用一个y轴...(loc=2) # 右侧坐标轴的图例位于右上角 plt.legend(loc=1) # 左侧坐标轴的图例位于左上角 ax.set_ylabel('B') # 设置左侧坐标轴的label plt.show...() 输出为: 4.3 设置渐变色/边缘/边缘宽度 df4.plot.scatter(x="a", # x轴 y="b", # y轴...总结 关于pandas的可视化的用法还有很多,这里不再拓展,但还是建议使用matplotlib,seaborn等库完成绘图。

    3.1K20
    领券