首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    加密与数字签名

    一、加密   数据加密技术从技术上的实现分为在软件和硬件两方面。按作用不同,数据加密技术主要分为数据传输、数据存储、数据完整性的鉴别以及密钥管理技术这四种。   在网络应用中一般采取两种加密形式:对称密钥和公开密钥,采用何种加密算法则要结合具体应用环境和系统,而不能简单地根据其加密强度来作出判断。因为除了加密算法本身之外,密钥合理分配、加密效率与现有系统的结合性,以及投入产出分析都应在实际环境中具体考虑。    对于对称密钥加密。其常见加密标准为DES等,当使用DES时,用户和接受方采用64位密钥对报文加密和解密,当对安全性有特殊要求时,则要采取 IDEA和三重DES等。作为传统企业网络广泛应用的加密技术,秘密密钥效率高,它采用KDC来集中管理和分发密钥并以此为基础验证身份,但是并不适合 Internet环境。   在Internet中使用更多的是公钥系统。即公开密钥加密,它的加密密钥和解密密钥是不同的。一般对于每 个用户生成一对密钥后,将其中一个作为公钥公开,另外一个则作为私钥由属主保存。常用的公钥加密算法是RSA算法,加密强度很高。具体作法是将数字签名和 数据加密结合起来。发送方在发送数据时必须加上数据签名,做法是用自己的私钥加密一段与发送数据相关的数据作为数字签名,然后与发送数据一起用接收方密钥 加密。当这些密文被接收方收到后,接收方用自己的私钥将密文解密得到发送的数据和发送方的数字签名,然后,用发布方公布的公钥对数字签名进行解密,如果成 功,则确定是由发送方发出的。数字签名每次还与被传送的数据和时间等因素有关。由于加密强度高,而且并不要求通信双方事先要建立某种信任关系或共享某种秘 密,因此十分适合Internet网上使用。   下面介绍几种最常见的加密体制的技术实现:   1.常规密钥密码体制   所谓常规密钥密码体制,即加密密钥与解密密钥是相同的。   在早期的常规密钥密码体制中,典型的有代替密码,其原理可以用一个例子来说明:   将字母a,b,c,d,…,w,x,y,z的自然顺序保持不变,但使之与D,E,F,G,…,Z,A,B,C分别对应(即相差3个字符)。若明文为student则对应的密文为VWXGHQW(此时密钥为3)。   由于英文字母中各字母出现的频度早已有人进行过统计,所以根据字母频度表可以很容易对这种代替密码进行破译。   2.数据加密标准DES   DES算法原是IBM公司为保护产品的机密于1971年至1972年研制成功的,后被美国国家标准局和国家安全局选为数据加密标准,并于1977年颁布使用。ISO也已将DES作为数据加密标准。   DES对64位二进制数据加密,产生64位密文数据。使用的密钥为64位,实际密钥长度为56位(有8位用于奇偶校验)。解密时的过程和加密时相似,但密钥的顺序正好相反。   DES的保密性仅取决于对密钥的保密,而算法是公开的。DES内部的复杂结构是至今没有找到捷径破译方法的根本原因。现在DES可由软件和硬件实现。美国AT&T首先用LSI芯片实现了DES的全部工作模式,该产品称为数据加密处理机DEP。   3.公开密钥密码体制   公开密钥(public key)密码体制出现于1976年。它最主要的特点就是加密和解密使用不同的密钥,每个用户保存着一对密钥 ? 公开密钥PK和秘密密钥SK,因此,这种体制又称为双钥或非对称密钥密码体制。   在这种体制中,PK是公开信息,用作加密密钥,而SK需要由用户自己保密,用作解密密钥。加密算法E和解密算法D也都是公开的。虽然SK与PK是成对出现,但却不能根据PK计算出SK。公开密钥算法的特点如下:   1、用加密密钥PK对明文X加密后,再用解密密钥SK解密,即可恢复出明文,或写为:DSK(EPK(X))=X     2、加密密钥不能用来解密,即DPK(EPK(X))≠X    3、在计算机上可以容易地产生成对的PK和SK。    4、从已知的PK实际上不可能推导出SK。    5、加密和解密的运算可以对调,即:EPK(DSK(X))=X    在公开密钥密码体制中,最有名的一种是RSA体制。它已被ISO/TC97的数据加密技术分委员会SC20推荐为公开密钥数据加密标准。 二、数字签名   数字签名技术是实现交易安全的核心技术之一,它的实现基础就是加密技术。在这里,我们介绍数字签名的基本原理。   以往的书信或文件是根据亲笔签名或印章来证明其真实性的。但在计算机网络中传送的报文又如何盖章呢?这就是数字签名所要解决的问题。数字签名必须保证以下几点:   接收者能够核实发送者对报文的签名;发送者事后不能抵赖对报文的签名;接收者不能伪造对报文的签名。   现在已有多种实现各种数字签名的方法,但采用公开密钥算法要比常规算法更容易实现。下面就

    01

    项目开发中,我们总能遇到的那么些坑,不仅是代码上的,还有第三方接口的

    今天测试移动给的SIM卡接口,昨天就发现给的接口url有问题,说是用WebService,但我愣是没有看到asmx的url接口路径啊(我是用.net开发的),结果自己测试了一下,果然有问题,就开始联系移动的对接人,嗯,好吧,果然是接口文档没有给全。随后给了接口文档,但是!!!没有demo,好不容易有个代码了是为了演示数字签名如何生成的,算法是HmacSHA256,还特么是java写的的,而且还是直接调用包来处理的!!!特么坑死了,一开始自己上网找了C#的HmacSHA256实现,FCL里面有这个类库,但是没有一开始自己没有好好看生成数字签名的过程,导致随后的装逼失败。就找对接人要了一份C#的代码,更坑!!!他给我的C#代码是好几个类组合的,直接一股脑给我了,而且里面的函数都重定义了,一堆错,还好我C#基础可以,自己挨个分析,找错。最后解决了。不过因为两个小问题,卡了半天,其一就是json,我给移动的接口url post的参数是json格式的,我一开始觉得参数少,就没有在意,直接就是手动写了json,谁知道就出错在这里!拼接的json串中间有空格!导致,移动给我的response一直都是: 数字签名有问题,给我气的,我嫌用第三方json麻烦,还要自己弄个类,之后经理跟我说,匿名类啊,哎呀,对啊。忘了它,最后使用匿名类,传入第三方json解决问题。其二就是浏览器了,我一开始直接把移动给的url用浏览器方法,谁知道弹出下载框,注意我用的是QQ浏览器,同事也试了,他可以接到返回值,他用的是谷歌,后来我换了浏览器就可以啦,因此,在这里建议,开发的话,还是多用几个浏览器,最好谷歌。 剩下的就是数字签名了,但也没有什么,最终重要的就是: 密钥appKey每两位长度转为10进制,然后再转为字节数组,整个数组为加密密钥 其实,我看数字签名的生成过程是崩溃的,还好这步,对接人给我的C#代码里面有,我就直接用了。给个代码吧:

    01

    区块链密码基础之签名算法(一)

    在国家的十四个五年规划和2035年远景目标纲要中的第五篇《加快数字化发展 建设数字中国》中第二节中提出培育壮大人工智能、大数据、区块链、云计算、网络安全等新兴数字产业:区块链部分明确要求通过推动区块链的技术创新,进一步为区块链服务平台和金融科技,供应链管理,政务服务等应用方案做好基础服务,并进一步完善管理机制。最新的《“十四五”数字经济发展规划》提到,“构建基于区块链的可信服务网络和应用支撑平台”。作为数字经济时代重要底层技术之一,区块链对推动企业数字化转型,促进产业数字化发展,推进数字中国建设都起着强大支撑作用。当前,政策叠加效应深度释放,我国区块链产业发展驶入“快车道”,已经成为驱动数字经济高质量发展的重要引擎。

    01

    浅析 HTTPS 和 SSL/TLS 协议

    1.ssl协议:通过认证、数字签名确保完整性;使用加密确保私密性;确保客户端和服务器之间的通讯安全 2.tls协议:在SSL的基础上新增了诸多的功能,它们之间协议工作方式一样 3.https协议:https over tls,tls协议是https协议的核心 4.CA:Certificate Authority,也称为电子商务认证中心,是负责发放和管理数字证书的权威机构 对称加密:加密和解密使用相同密钥的加密算法。它的速度快,通常在加密大量数据时使用 非对称加密:需要两个密钥来进行加密和解密,公钥与私钥。公钥加密的只能用私钥解密,反之私钥加密的也只能用公钥解密。通常用于重要信息的安全传输,缺点是速度比对称加密慢很多

    04
    领券