在Bazel build命令中传递-DVERBOSE标志,可以通过在命令行中使用"--copt"参数来实现。具体步骤如下:
这样,Bazel build命令将会在构建过程中传递"-DVERBOSE"标志给编译器,从而开启详细输出。请注意,这只是一个示例,具体的命令和标志可能因项目而异。
关于Bazel的更多信息和使用方法,您可以参考腾讯云的相关产品文档:
这里名词只做个索引,方便理解,可能现在反而让理解变得更加复杂,不过没关系,我们主要是实现的就是自定义 build flag。更多参见这里[1]。
在今天早些时候Angular团队发布了8.0.0稳定版。其实早在NgConf 2019大会上,演讲者就已经提及了从工具到差分加载的许多内容以及更多令人敬畏的功能。下面是我对8.0.0一些新功能的简单介绍,希望可以帮助大家快速了解新版本。
从CDSW1.1.0开始支持GPU,具体可以参考Fayson之前的文章《如何在CDSW中使用GPU运行深度学习》,从最新的CDSW支持GPU的网站上我们可以查到相应的Nvidia Drive版本,CUDA版本以及TensorFlow版本,如下:
本文会讲述 Bazel 自定义工具链的两种方式,Platform 和 Non-Platform 方式。会存在这两种方式的原因是 Bazel 的历史问题。例如,C++ 相关规则使用 --cpu 和 --crosstool_top 来设置一个构建目标 CPU 和 C++ 工具链,这样就可以实现选择不同的工具链构建 C++ 项目。但是这都不能正确地表达出“平台”特征。使用这种方式不可避免地导致出现了笨拙且不准确的构建 APIs。这其中导致了对 Java 工具链基本没有涉及,Java 工具链就发展了他们自己的独立接口 --java_toolchain。因此非平台方式(Non-Platform)的自定义工具链实现并没有统一的 APIs 来规范不同语言的跨平台构建。而 Bazel 的目标是在大型、混合语言、多平台项目中脱颖而出。这就要求对这些概念有更原则的支持,包括清晰的 APIs,这些 API 绑定而不是分散语言和项目。这就是新平台(platform)和工具链(toolchain) APIs 所实现的内容。
宏是实例化规则的函数。当 BUILD 文件过于重复或过于复杂时,它就非常有用,因为它允许您重复使用某些代码。
原因还是以前常见的镜像服务错误:http: server gave HTTP response to HTTPS client
最近在 BazelCon 23 上宣布,Bazel 7 推出了多年来一直在开发中的一系列新功能,其中包括全新的模块化外部依赖管理系统 Bzlmod、全新优化的“Build without the Bytes”模式、得益于 Project Skymeld 的多目标构建性能改进等等。
为了实现如标题所述的将多个静态库合并为一个动态库,内置的 Bazel 规则是没有这个功能的,Bazel C/C++ 相关的内置规则有:
Bazel 支持很多内置的规则,语言相关规则有 Shell、Objective-C、C++ 和 Java,比如 sh_binary、cc_binary、cc_import、cc_library、java_binary、java_import等。但是 Go 编译内置规则没有支持,不过好在 Bazel 支持规则扩展,可以自定义 Go 相关规则,包括可以实现如 go_binary、go_library、go_test等规则。而 `rules_go`[1] 就是 Bazel 官方维护的 Go Bazel 开源扩展规则。`gazelle`[2] 这个项目可以将 Go 项目转为 Bazel 方式构建,包括生成 BUILD.bazel 文件,根据 go.mod 文件自动生成下载依赖模块规则 go_repository。这里简单介绍下 rules_go 和 gazelle 相关内容,更多可以参考官方相关文档。
本文介绍了如何使用深度学习模型进行图像分类,并探讨了在训练和评估模型时出现的问题及解决方案。
本文的目的是分享在TX1上安装Tensorflow Serving时遇到的主要问题,避免重复踩坑。
对于深度学习领域的从业者而言,Keras 肯定不陌生,它是深度学习的主流框架之一。2015 年 3 月 27 日,谷歌软件工程师、Keras 之父 Francois Chollet 在其 GitHub 上提交并公布了 Keras 的首个版本。作为使用纯 Python 编写的深度学习框架,Keras 的代码更加简单方便,适用于初学者。此外,Keras 具有很强的易扩展性,能够直观地定义神经网络,函数式 API 的使用令用户可以将层定义为函数。
在当今的软件开发世界中,构建工具的选择对于提高开发效率、维护代码质量以及提升团队协作能力都至关重要。谷歌作为全球技术巨头,为了解决大规模代码构建和测试的挑战,开发了一款名为Bazel的构建工具。Bazel具有强大的功能和灵活性,已成为开源社区中的明星工具。本文将深入探讨谷歌的Bazel构建工具及其在软件开发中的应用。
最近公司给我们分配了2台虚拟机服务器用于强化学习训练,我们在虚拟环境中安装好了TensorFlow环境后,在import tensorflow时发现报了下面的错误:
本篇文章通过https://github.com/bazelbuild/examples/tree/main/cpp-tutorial里面的例子,来简单介绍下bazel构建的基础知识,方便后续查找和学习。
最近公司给我们分配了2台虚拟机服务器用于强化学习训练,我们在虚拟环境中安装好了TensorFlow环境后,在import tensorflow时发现报了下面的错误: 于是我去Google搜索了下出现这个错误的原因,发现是因为我们服务器的CPU不支持AVX指令集导致的,而使用pip安装的TensorFlow需要依赖AVX指令集,为了确认我们的CPU是否真的不支持AVX指令集,我使用cat /proc/cpuinfo 命令查看了下目前CPU指令集支持情况,发现我们的CPU果然不支持AVX指令集。 又不支持
MediaPipe是用于构建跨平台多模态应用ML管道的框架,其包括快速ML推理,经典计算机视觉和媒体内容处理(如视频解码)。下面是用于对象检测与追踪的MediaPipe示例图,它由4个计算节点组成:PacketResampler计算器;先前发布的ObjectDetection子图;围绕上述BoxTrakcing子图的ObjectTracking子图;以及绘制可视化效果的Renderer子图。
ObjectDetection子图仅在请求时运行,例如以任意帧速率或由特定信号触发。更具体地讲,在将视频帧传递到ObjectDetection之前,本示例中的PacketResampler将它们暂时采样为0.5 fps。你可以在PacketResampler中将这一选项配置为不同的帧速率。正是因为如此,在识别的时候可以时间抖动更少,而且可以跨帧维护对象ID。
genrule 的 参数 分为:sources,a tool(例如一个内置命令,一个shell脚本),一条命令,outputs
Tensorflow Lite官方在移动端提供了官方编译好的库,我们直接拿来用就好。Tensorflow 在Linux平台与Mac平台下编译也非常轻松,基本不会遇到太多问题(据说Google内部只用Linux与Mac)。但是在Windows下编译真是一波三折,好在已经编译成功了,记录一下Windows 10下Tensorflow Lite编译过程,帮助一下跟我一样被Tensorflow折腾的不行的人。
tensorflow bazel 编译命令: (编译cpu支持的版本,限制编译的内存为2GB, 并兼容旧版本的ABI)
主要区别就下面的生成{templator}的不同,后者进入仓库的tools/manifest-templator/目录后执行go build生成可执行文件然后复制到{templator}路径。
机器之心报道 编辑:杜伟、小舟 以后在本地运行 Keras Bazel 测试将不再花费几小时,只需要几分钟。 对于深度学习领域的从业者而言,Keras 肯定不陌生,它是深度学习的主流框架之一。2015 年 3 月 27 日,谷歌软件工程师、Keras 之父 Francois Chollet 在其 GitHub 上提交并公布了 Keras 的首个版本。作为使用纯 Python 编写的深度学习框架,Keras 的代码更加简单方便,适用于初学者。此外,Keras 具有很强的易扩展性,能够直观地定义神经网络,函数式
很巧的是编译安装tensorflow-gpu版成功了。 tensorflow已经更新到1.13版,官方的linux安装文件采用的是glibc2.23, 而centos只支持到glibc2.17,所以在使用pip install tensorflow-gpu安装后的使用过程中会报错:
TensorFlow对Android、iOS、树莓派都提供移动端支持。 移动端应用原理。移动端、嵌入式设备应用深度学习方式,一模型运行在云端服务器,向服务器发送请求,接收服务器响应;二在本地运行模型,
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
之前搞 opentelemetry-cpp 的时候接触了下 bazel 构建系统。这玩意儿用起来有一点坑,特别是使用自定义编译环境的时候。
本文介绍了如何利用TensorFlow进行图像分类,并通过一个简化版本的Inception模型来获取其基本概念。首先,文章介绍了TensorFlow的背景信息,然后详细说明了如何使用TensorFlow构建可训练的CNN模型。接着,文章通过一个简化版本的Inception模型来说明如何提取卷积神经网络的输出,并将其转换为实际分类结果。最后,文章介绍了一些常见的图像分类任务,并给出了一些建议,以帮助读者更好地理解图像分类任务。
问题 在执行 bazel tensorflow serving 的时候出现下面的错误 ERROR: error loading package ‘’: in /home/wangcongying/tools/serving/tensorflow_serving/workspace.bzl: Encountered error while reading extension file ‘tensorflow/workspace.bzl’: no such package ‘@org_tensorflow/
C++ 编译与构建工具主要用于将 C++ 源代码转换为可执行程序。它们可以分为以下几类:
我们之前的文章里经常使用常规规则(regular rules)函数 rule() 来创建自定义规则,但是这些规则都有一个问题:他们依赖于主机系统上安装的各种工具。这样就会出现一个问题,即构建是不可复制的,如果同一项目上的两个开发人员安装了不同版本的 Go SDK,则他们将构建不同的二进制文件。它还会中断远程执行,即主机的工具链可能在执行平台上不可用。而 repository_rule() 就可以解决这个问题。
经过一周的反复折腾,终于能顺利 debug envoy 源码,中途踩了无数坑,在此记录一下。
为了将proto文件转成编程语言代码,需要安装编译工具protoc。本篇验证使用 Bazel 构建 是否能和手动执行 protoc 和插件 的编译一样的结果。
作为一名围棋渣渣,时不时会上对弈平台下下棋。围棋太博大精深,非常惭愧,虽然在下棋上花的时间很多,但一直处在菜鸟阶段,长期在1级和1段之间徘徊(腾讯野狐围棋上的排位)。要提升水平,需要下功夫去记定式、做死活题,但那太枯燥了,相较而言,我更喜欢上网厮杀,屠龙或被屠,爽一把再说。我等初级选手,经常会碰到那种不按套路的对手,有时明明觉得对方下了无理手,但就是不知道如何反击。再就是棋盘太空旷,不知如何选点。这些虽然在书上可以学到一些基本技巧,但一到实战,往往不知如何下手。
Bazelisk Python版本已经废弃,最新的是用 Go 编写的,bazelisk 在 Bazel 外面又包装了一层。它会根据项目当前的工作目录自动选择一个配置的 Bazel 版本,从官方服务器下载它(如果需要),然后将所有命令行参数透传给真正的 Bazel 二进制文件。这样就可以像调用 Bazel 一样调用它。
技术是安身立命之本,实践出真知,熟能生巧,佐以业务能力,遇上风口之时,可逆天改命!
安装环境为CENTOS6.8操作系统,pip安装tensorflow后提示GLIBC版本过低。考虑到升级GLIBC有一定的风险,所以决定使用编译安装的方式安装tensorflow。基本流程是按照这篇教程: http://www.jianshu.com/p/fdb7b54b616e/ 进行的,但是因为选择使用的版本有些不同,自己又遇到了一些坑。所以重新整理一下操作步骤。为了使安装步骤对操作系统影响最小,安装时不使用root账户以及sudo权限,而是使用了一个普通账户makeuser进行操作(少数步骤需要使用root操作)
容器镜像是编译构建而成、存储在镜像仓库中、由Docker命令或kubectl命令启动运行的软件包。在容器镜像的构建、保存、获取以及启动环节中,有很多的安全隐患。
在本篇文章中,我们将会介绍TensorFlow的安装,TensorFlow是Google公司在2015年11月9日开源的一个深度学习框架。
刷机的目的是把Ubuntu操作系统和JetPack SDK安装到Jetson TX2上。刷机的操作按照官方教程即可,比较容易。这个过程中有一点需要注意:Jetson TX2和宿主机Host必须连接在同一个路由器之下。Host会先把操作系统刷到TX2上,这一步是通过数据线连接的方式完成,然后使用SSH的方式安装Host上的SDK到TX2,所以Host和TX2需要连接在同一个路由器下,方便Host找到TX2的ip地址。
{Fast, Correct} - Choose two Build and test software of any size, quickly and reliably
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
经过三年的试用,2020 年,Spotify 决定采用 Bazel 作为 Spotify iOS 应用程序的官方构建系统。按照 Spotify 工程师 Patrick Balestra 的说法,这一切换将他们的构建时间减少了四分之三。
Bazel 是 Google 公司于 2015 年开源的一款构建框架,至今收获了 21k 的 star 数,远超 gradle、maven、cmake 等同类产品。近几年来,字节阿里腾讯等互联网大厂也逐步拥抱 Bazel,搭建自己的构建体系。
操作系统:GUN Linux操作系统AARCH64架构。 istio-proxy版本:istio-proxy1.15.2
Bazel是一个类似于Make的编译工具,是Google为其内部软件开发的特点量身定制的工具,如今Google使用它来构建内部大多数的软件。(怪不得看起来很像Android.bp语法 O(∩_∩)O)
上一篇大概介绍了istio引入了wasm以及wasm的简史介绍。虽然引入了一些知识引导读者了解一下它的简单特性,但是还有些欠缺,这里要打个补丁。详细阐述一下 wasm 构建及使用的相关知识。
对于个人和公司来说,存在许多状况是更希望在本地设备上做深度学习推断的:想象一下当你在旅行途中没有可靠的互联网链接时,或是要处理传输数据到云服务的隐私问题和延迟问题时。
官方没有直接给出AAR,而是让自己用巴泽尔去编译一个,实在是有点坑啊。
领取专属 10元无门槛券
手把手带您无忧上云