首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    必备必考 | 调参技能之学习率衰减方案(一)—超多图直观对比

    为了帮助深度学习从业者(如自己)学习如何评估问题并选择合适的学习率,我们将开始一系列关于学习率衰减方案和使用Keras进行超参数调整的教程。...结果中包含的五个实验分别对应于具有tran_*.png文件名的五个图。 pyimagesearch 模块包含了我们的ResNet CNN和learning_rate_schedulers.py。...LearningRateDecay父类只包含一个叫plot的方法,用于绘制每种类型的学习率衰减图。...第10-11行为当前epoch计算调整后的学习率,而第14行返回新的学习率。 运行训练程序 现在我们已经实现了一些不同的keras学习率方案,让我们看看如何在实际的训练程序中应用它们。...从那里开始,3和4行构建我们的ResNet CNN,输入形状为32x32x3和10个类。

    4.4K20

    使用PyTorch实现鸟类音频检测卷积网络模型

    跳入其中,鸟的音频检测出现了这样一个利基(有利可图的形式),在本文中,我将向您展示如何在BirdVox-70k数据集上使用一个简单的卷积神经网络(CNN)来实现这一点。...所以,这就是深度学习和cnn发挥作用的地方。如果我们的模型足够精确,我们可以通过在野外设置麦克风来自动记录鸟类迁徙模式和追踪鸟类种类。...那么,上面这张图是什么呢? 让我们先谈谈声音。声音基本上是由奇特的压力波组成的,这些压力波通过空气进入我们的耳膜,可以被数字设备作为信号记录下来。结果表明,我们可以将这个信号绘制如下图: ?...在创建谱图的过程中,时间窗本身会发生重叠,通常频率强度(音量或响度)用颜色表示,或者用数字来表示高/低值。 ? 从上面所示的完全相同的波形中锻造出的光谱图。...因此,CNN音频分类器经常以光谱图作为输入,鸟叫声的音频检测模型也不例外。

    1.6K20

    卷积神经网络(猫狗分类)

    ==========] - 12s 118ms/step - loss: 0.0597 - acc: 0.9855 - val_loss: 0.4191 - val_acc: 0.7160 # 绘制进度曲线...在第5轮之后就出现了训练和验证的差异,存在过拟合问题 数据增强 数据增强是从现有的训练样本中生成更多的训练数据,方法是利用多种能够生成可信图像的随机变换来增加样本,比如对图片进行角度变换,平移等方法...生成的四张图片和原始图片内容一致,但是角度方向等存在差异,又可以看做不一致 Dropout减少过拟合 前面的数据增强可以减少一部分过拟合,但是不足以完全消除过拟合,因此可以添加一个Dropout层再次减少过拟合...0.8286 进行了100次迭代,废了好长的时间,可以看出模型的精确度在不断的增加 model.save('cats_and_dogs_small_2.h5')# 保存训练好的模型 # 再次绘制曲线...在精确度的图中,训练集和验证机的模型精确度都是增加的,最终的精确度为acc: 0.8474 val_acc: 0.8286, 相比较没有进行正则化的模型精确度acc: 0.9855 - val_acc:

    1.7K10

    这是一份你们需要的Windows版深度学习软件安装指南

    既然打算使用 GPU,为什么还要安装 CPU 优化的线性代数库如 MKL 呢?在我们的设置中,大多数深度学习都是由 GPU 承担的,这并没错,但 CPU 也不是无所事事。...基本的转换比如下采样和均值归 0 的归一化也是必需的。如果你觉得这样太冒险,可以试试额外的预处理增强(噪声消除、直方图均化等等)。当然也可以用 GPU 处理并把结果保存到文件中。...PATH 中。...%CUDA_PATH%\libnvvp 到 PATH 中 cuDNN v5.1 (Jan 20, 2017) for CUDA 8.0 根据英伟达官网「cuDNN 为标准的运算如前向和反向卷积、池化、归一化和激活层等提供高度调优的实现...=theano (dlwin36) $ set THEANO_FLAGS=%THEANO_FLAGS_CPU% (dlwin36) $ python mnist_cnn.py #以下为训练过程和结果

    1.8K80

    如何使用keras,python和深度学习进行多GPU训练

    在今天文章的其他部分中,我将演示如何使用keras,python和深度学习训练图像分类的CNN。 MiniGoogLeNet 深度学习框架 ?...在上面的图1中,我们可以看到单个卷积(左),初始(中)和下采样(右)模块,然后是从这些模块来构建MiniGoogLeNet架构(底部)。...梯度更新的结果将在CPU上组合,然后在整个训练过程中应用与每个GPU。 既然训练和测试已经完成,让我们画出损失/准确率图,以便可视化整个训练过程。...# 获取历史对象字典 H = H.history # 绘制训练的loss和准确率的图 N = np.arange(0, len(H["loss"])) plt.style.use("ggplot")...["output"]) plt.close() 最后一块仅使用matplotlib绘制训练/测试的loss和准确率的曲线图(6-15行),然后将曲线图保存到磁盘中(18行)。

    2.9K30

    如何使用keras,python和深度学习进行多GPU训练

    在今天文章的其他部分中,我将演示如何使用keras,python和深度学习训练图像分类的CNN。 MiniGoogLeNet 深度学习框架 ?...在上面的图1中,我们可以看到单个卷积(左),初始(中)和下采样(右)模块,然后是从这些模块来构建MiniGoogLeNet架构(底部)。...梯度更新的结果将在CPU上组合,然后在整个训练过程中应用与每个GPU。 既然训练和测试已经完成,让我们画出损失/准确率图,以便可视化整个训练过程。...# 获取历史对象字典 H = H.history # 绘制训练的loss和准确率的图 N = np.arange(0, len(H["loss"])) plt.style.use("ggplot")...["output"]) plt.close() 最后一块仅使用matplotlib绘制训练/测试的loss和准确率的曲线图(6-15行),然后将曲线图保存到磁盘中(18行)。

    3.3K20

    使用Keras的Python深度学习模型的学习率方案

    你可以通过在训练中改变学习率来提高性能和提高训练速度。 在这篇文章中,你将了解如何使用Keras深度学习库在Python中使用不同的学习率方案。...0.0616 - val_acc:0.9828 Epoch48/50 0s - loss:0.0632 - acc:0.9830 - val_loss:0.0824 - val_acc:0.9914 Epoch49...InitialLearningRate是初始学习率,如0.1,DropRate是每次改变时学习率修改的量,如0.5,Epoch是当前的周期数,EpochDrop是学习率改变的频率,如10 。...0.0696 - val_acc:0.9914 Epoch48/50 0s - loss:0.0537 - acc:0.9872 - val_loss:0.0675 - val_acc:0.9914 Epoch49...:0.9872 - val_loss:0.0679 - val_acc:0.9914 使用学习率方案的提示 本节列出了使用神经网络学习率方案时需要考虑的一些提示和技巧。

    2.8K50

    这是一份你们需要的Windows版深度学习软件安装指南

    既然打算使用 GPU,为什么还要安装 CPU 优化的线性代数库如 MKL 呢?在我们的设置中,大多数深度学习都是由 GPU 承担的,这并没错,但 CPU 也不是无所事事。...基本的转换比如下采样和均值归 0 的归一化也是必需的。如果你觉得这样太冒险,可以试试额外的预处理增强(噪声消除、直方图均化等等)。当然也可以用 GPU 处理并把结果保存到文件中。...PATH 中。...%CUDA_PATH%\libnvvp 到 PATH 中 cuDNN v5.1 (Jan 20, 2017) for CUDA 8.0 根据英伟达官网「cuDNN 为标准的运算如前向和反向卷积、池化、归一化和激活层等提供高度调优的实现...=theano (dlwin36) $ set THEANO_FLAGS=%THEANO_FLAGS_CPU% (dlwin36) $ python mnist_cnn.py #以下为训练过程和结果

    71320

    Tensorflow2——卷积神经网络的搭建

    在卷积神经网络中,第一个卷积层直接接受图像像素级的输入,卷积之后传给后面的网络,每一层的卷积操作相当于滤波器,对图像进行特征提取,原则上可保证尺度,平移和旋转不变性。...卷积神经网络的好处在于,参数数量只与滤波器数目和卷积核大小有关,与输入图像尺寸无关。总结一下CNN的要点:局部连接,权值共享,池化(降采样)。...2、使用卷积核扫描区域并将卷积核对应位置的参数和扫描区域数值相乘求和得到特征值,扫描多个区域得到多个特征值组合的矩阵就是特征图(feature map)。...history.history.keys() #查看history字典中存在的一些元素,输出为dict_keys(['loss', 'acc', 'val_loss', 'val_acc']) #...下面来进行图形的绘制 plt.plot(history.epoch,history.history.get("loss"),history.history.get("val_loss")) #图一 plt.plot

    1.2K20

    Keras深度神经网络训练IMDB情感分类的四种方法

    =nb_epoch, validation_data=(X_test, y_test)) N-gram 特征提取 本例中 create_ngram_set() 和 add_ngram...Id)放到该序列的尾部,不舍弃原始的序列,其操作如代码中解释: Example: adding bi-gram >>> sequences = [[1, 3, 4, 5], [1, 3,...- acc: 0.9718 - val_loss: 0.2603 - val_acc: 0.9016 Epoch 4/5 25000/25000 [==========================...CNN 这个例子介绍了如何使用一维卷积来处理文本数据,提供了一种将擅长于图像处理的CNN引入到文本处理中的思路,使用 Convolution1D 对序列进行卷积操作,再使用 GlobalMaxPooling1D...CNN+LSTM 是 CNN 和 LSTM 的结合体,其详细代码如下: from __future__ import print_function import numpy as np np.random.seed

    2.8K10
    领券