首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在GCP上的Dataproc集群上安装presto-admin?

在GCP上的Dataproc集群上安装presto-admin可以通过以下步骤完成:

  1. 登录到GCP控制台并导航到Dataproc页面。
  2. 创建一个新的Dataproc集群或选择现有的集群。
  3. 在集群详情页面的"初始化脚本"部分,添加以下脚本:
代码语言:bash
复制
#!/bin/bash
sudo apt-get update
sudo apt-get install -y python3-pip
sudo pip3 install presto-admin

这将在集群启动时自动安装所需的软件包和presto-admin。

  1. 配置集群的其他参数,如节点数量、机器类型等。
  2. 点击"创建"按钮启动集群。
  3. 集群启动后,可以使用SSH连接到集群的主节点。
  4. 在主节点上,使用以下命令初始化presto-admin:
代码语言:bash
复制
presto-admin init

这将生成一个配置文件,用于管理Presto集群。

  1. 根据需要修改presto-admin的配置文件,例如指定Presto集群的节点数量、机器类型等。
  2. 使用以下命令安装Presto集群:
代码语言:bash
复制
presto-admin install

这将在集群的所有节点上安装Presto。

  1. 安装完成后,可以使用presto-admin命令管理Presto集群,例如启动、停止、重启集群等。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据实时查询-Presto集群部署搭建

    Presto是一个分布式SQL查询引擎, 它被设计为用来专门进行高速、实时的数据分析。它支持标准的ANSI SQL,包括复杂查询、聚合(aggregation)、连接(join)和窗口函数(window functions)。Presto的运行模型和Hive或MapReduce有着本质的区别。Hive将查询翻译成多阶段的MapReduce任务, 一个接着一个地运行。 每一个任务从磁盘上读取输入数据并且将中间结果输出到磁盘上。 然而Presto引擎没有使用MapReduce。它使用了一个定制的查询和执行引擎和响应的操作符来支持SQL的语法。除了改进的调度算法之外, 所有的数据处理都是在内存中进行的。 不同的处理端通过网络组成处理的流水线。 这样会避免不必要的磁盘读写和额外的延迟。 这种流水线式的执行模型会在同一时间运行多个数据处理段, 一旦数据可用的时候就会将数据从一个处理段传入到下一个处理段。 这样的方式会大大的减少各种查询的端到端响应时间。

    04

    《Scikit-Learn、Keras与TensorFlow机器学习实用指南(第二版)》第19章 规模化训练和部署TensorFlow模型

    有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。

    02

    SkyPilot:一键在任意云上运行 LLMs

    在云计算日益普及的今天,如何有效、经济且无缝地在各种云平台上运行大语言模型(LLMs)、AI 和批处理作业成为了迫切的需求。SkyPilot 项目应运而生,旨在解决这一核心问题。它不仅抽象并简化了云基础设施操作,为用户提供了在任何云平台上轻松部署和扩展作业的能力,还通过自动获取多个云平台 GPU 的实时价格并进行实时比价,帮助用户选择最优的云平台来运行自己的 Job。这样做极大地降低了成本,提供了高度的 GPU 可用性,让云基础设施管理变得轻而易举。这样做极大的满足了市场对高效、低成本云资源利用的需求。通过 SkyPilot,企业和开发者能够最大化地利用 GPU,进一步推动了人工智能和大数据处理技术的发展,为云计算市场带来了新的可能。

    01
    领券