首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Here Map中为'DomIcon|DomMarker‘设置’锚点‘或’偏移量‘?

在Here Map中,DomIconDomMarker 是用于在地图上显示自定义HTML元素的两种对象。为了使这些元素正确地定位在地图上的特定点,可以设置它们的锚点(anchor)或偏移量(offset)。

锚点(Anchor)

锚点是元素相对于地图上点的位置。例如,如果你有一个指向北方的箭头图标,你可能希望箭头的底部中心点(即锚点)位于地图上的特定坐标。

偏移量(Offset)

偏移量是从锚点开始,元素在水平和垂直方向上移动的距离。这对于微调元素位置非常有用。

设置锚点和偏移量

在Here Map中,你可以通过设置anchoroffset属性来调整DomIconDomMarker的位置。

示例代码

以下是一个如何在Here Map中设置DomIcon的锚点和偏移量的示例:

代码语言:txt
复制
// 创建一个地图实例
var map = new H.Map(
  document.getElementById('mapContainer'),
  {
    center: { lat: 52.5, lng: 13.4 },
    zoom: 13,
    pixelRatio: window.devicePixelRatio || 1
  }
);

// 添加地图控件
map.addObject(new H.ui.UI.createDefaultControls({}));

// 创建一个DomIcon实例
var icon = new H.map.DomIcon(
  document.getElementById('myIcon'), // 这里应该是你的HTML元素的ID
  {
    anchor: { x: 'center', y: 'bottom' }, // 设置锚点为中心底部
    offset: new H.math.Point(0, -10) // 设置偏移量,这里是向上偏移10像素
  }
);

// 创建一个DomMarker实例,并将DomIcon应用到它上面
var marker = new H.map.DomMarker(
  { lat: 52.5, lng: 13.4 },
  { icon: icon }
);

// 将marker添加到地图上
map.addObject(marker);

应用场景

  • 自定义标记:当你需要在地图上放置自定义的HTML标记时,可以使用DomIconDomMarker
  • 动态内容:如果你需要显示动态更新的内容,比如实时天气信息或者用户评论,这些可以通过DomIcon来实现。

常见问题及解决方法

  • 元素位置不正确:检查你的锚点和偏移量设置是否正确。确保它们符合你的预期。
  • 元素闪烁或跳动:这可能是由于地图的缩放级别变化导致的。确保在不同的缩放级别下测试你的标记,必要时调整锚点和偏移量。
  • 元素超出地图边界:如果你的自定义元素很大,可能会超出地图的可视区域。使用CSS来控制元素的大小,或者调整偏移量以确保元素始终在地图内。

参考链接

请注意,上述代码和链接是基于Here Maps的JavaScript API,如果你使用的是其他地图服务,可能需要调整相应的API调用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Feature Selective Anchor-Free Module for Single-Shot Object Detection(文献阅读)

    目标的多尺度变化在目标检测中是一个很重要的问题,利用特征层多尺度(或anchor多尺度)是一种有效的解决方案。Anchor box用于将所有可能的Instance box离散为有限数量的具有预先定义的位置、尺度和纵横比的box。Instance box和Anchor box基于IOU重叠率来匹配。当这种方法集成到特征金字塔的时候,大的anchor通常和上部的特征相映射,小的anchor通常和下部的特征相映射,如下图所示。这是基于启发式的,即上层特征图有更多的语义信息适合于检测大的目标,而下层特征图有更多的细粒度细节适合于检测小目标。然而,这种设计有两个局限性:1)启发式引导的特征选择;2)基于覆盖锚取样。在训练过程中,每个实例总是根据IoU重叠匹配到最近的锚盒。而锚框则通过人类定义的规则(如框的大小)与特定级别的功能映射相关联。因此,为每个实例选择的特性级别完全基于自组织启发式。例如,一个汽车实例大小50×50像素和另一个类似的汽车实例规模60×60像素可能分配到两个不同的特征层,而另一个40×40像素大小的实例可能被分配到和50x50相同的特征层,如下图所示。

    02

    Feature Selective Anchor-Free Module for Single-Shot Object Detection

    提出了一种简单有效的单阶段目标检测模块——特征选择无锚定(FSAF)模块。它可以插入到具有特征金字塔结构的单阶段检测器中。FSAF模块解决了传统基于锚点检测的两个局限性:1)启发式引导的特征选择;2)基于覆盖锚取样。FSAF模块的总体思想是将在线特征选择应用于多水平无锚分支的训练。具体来说,一个无锚的分支被附加到特征金字塔的每一层,允许在任意一层以无锚的方式进行盒编码和解码。在训练过程中,我们动态地将每个实例分配到最合适的特性级别。在推理时,FSAF模块可以通过并行输出预测与基于锚的分支联合工作。我们用无锚分支的简单实现和在线特性选择策略来实例化这个概念。在COCO检测轨道上的实验结果表明,我们的FSAF模块性能优于基于锚固的同类模块,而且速度更快。当与基于锚点的分支联合工作时,FSAF模块在各种设置下显著地改进了基线视网膜网,同时引入了几乎自由的推理开销。由此产生的最佳模型可以实现最先进的44.6%的映射,超过现有的COCO单单阶段检测器。

    02

    【文本检测与识别-白皮书-3.1】第三节:算法模型 2

    CTPN,全称是“Detecting Text in Natural Image with Connectionist Text Proposal Network”(基于连接预选框网络的文本检测)。CTPN直接在卷积特征映射中检测一系列精细比例的文本建议中的文本行。CTPN开发了一个垂直锚定机制,可以联合预测每个固定宽度提案的位置和文本/非文本得分,大大提高了定位精度。序列建议由递归神经网络自然连接,该网络无缝地合并到卷积网络中,形成端到端可训练模型。这使得CTPN能够探索图像的丰富上下文信息,使其能够强大地检测极其模糊的文本。CTPN可以在多尺度和多语言文本上可靠地工作,而不需要进一步的后处理,不同于以前需要多步骤后过滤的自下而上的方法。

    02

    Single-Shot Refinement Neural Network for Object Detection

    对于目标检测,两阶段方法(如Faster R-CNN)的准确率最高,而单阶段方法(如SSD)的效率较高。为了在继承两种方法优点的同时克服它们的缺点,本文提出了一种新的单阶段检测器,称为RefineDet,它比两阶段方法具有更好的精度,并保持了与单阶段方法相当的效率。RefineDet由两个相互连接的模块组成,即锚点细化模块和目标检测模块。具体来说,前者的目的是(1)过滤掉负锚点,减少分类器的搜索空间,(2)粗调锚点的位置和大小,为后续回归器提供更好的初始化。后一个模块以改进后的锚为输入,进一步改进回归,预测多类标签。同时,我们设计了一个传输连接块来传输锚点细化模块中的特征,以预测目标检测模块中目标的位置、大小和类标签。多任务丢失功能使我们能够以端到端方式训练整个网络。在PASCAL VOC 2007、PASCAL VOC 2012和MS COCO上的大量实验表明,RefineDet能够以高效的方式实现最先进的检测精度。

    01

    IENet: Interacting Embranchment One Stage Anchor Free Detector

    航空图像中的目标检测是一项具有挑战性的任务,因为它缺乏可见的特征和目标的不同方向。目前,大量基于R-CNN框架的检测器在通过水平边界盒(HBB)和定向边界盒(OBB)预测目标方面取得了显著进展。然而,单级无锚解仍然存在开放空间。提出了一种基于逐像素预测检测器的航空图像定向目标单级无锚检测器。我们通过开发一个具有自我注意机制的分支交互模块来融合来自分类和框回归分支的特征,从而使它成为可能。在角度预测中采用几何变换,使预测网络更易于管理。我们还引入了一种比正多边形借条更有效的借条损耗来检测OBB。在DOTA和HRSC2016数据集上对所提出的方法进行了评估,结果表明,与最先进的检测器相比,我们所提出的IENet具有更高的OBB检测性能。

    01

    Stereo R-CNN based 3D Object Detection for Autonomous Driving

    提出了一种充分利用立体图像中稀疏、密集、语义和几何信息的自主驾驶三维目标检测方法。我们的方法,称为Stereo R-CNN,扩展了Faster R-CNN的立体输入,以同时检测和关联目标的左右图像。我们在立体区域建议网络(RPN)之后添加额外的分支来预测稀疏的关键点、视点和目标维数,并结合二维左右框来计算粗略的三维目标边界框。然后,我们恢复准确的三维包围框,以区域为基础的光度比对使用左和右ROI。我们的方法不需要深度输入和三维位置监督,但是,优于所有现有的完全监督的基于图像的方法。在具有挑战性的KITTI数据集上的实验表明,我们的方法在三维检测和三维定位任务上都比目前最先进的基于立体的方法高出30%左右的AP。

    02
    领券